Документ подписан простой электронной подписью

Информация о владельце Седеральное государственное бюджетное образовательное фио: Комин Андрей Эдуардович разовательное учреждение высшего образования дата подписания: 28.10-2023 16:55:52 Уникальный программный ключ. Оставления обессибенной программный ключ.

MATEMATHKA

Методические указания для выполнения контрольной и самостоятельной работы по дисциплине (модулю) для обучающихся заочной формы обучения по направлению подготовки 21.03.02 Землеустройство и кадастры Часть 1

Электронное издание

Составитель: Савельева Е.В., канд.тех.наук, доцент инженерно-технологического института.

Математика: методические указания для выполнения контрольной и самостоятельной работы по дисциплине (модулю) для обучающихся заочной формы обучения по направлению подготовки. Часть 1. 21.03.02 Землеустройство и кадастры [Электронный ресурс]: / Е.В. Савельева; ФГБОУ ВО ПГСХА. - Электрон. текст дан. - Уссурийск: ПГСХА, 2021. - 65 с. - Режим доступа: www. de.primacad.ru.

Рецензент: И.В. Жуплей, к.э.н., доцент института землеустройства и агротехнологии.

Методические указания составлены в соответствии требованиям стандарта ФГОС 3++ по направлению подготовки 21.03.02 Землеустройство и кадастры, содержат контрольные задания для самостоятельной работы обучающихся и методические указания по их выполнению.

Издается по решению методического совета ФГБОУ ВО Приморская ГСХА.

Введение

Настоящие методические указания составлены с целью помочь студентузаочнику овладеть основными приемами и методами решения задач по высшей математике, привить умение самостоятельно изучать учебную литературу по математике, повысить общий уровень математической культуры.

В методических указаниях приводятся рекомендации по изучению дисциплины, указания к выполнению контрольных работ, образцы решения типовых задач, контрольные задания.

Общие методические указания

Основной формой обучения студента-заочника является самостоятельная работа над учебным материалом: чтение учебников, решение задач, выполнение контрольных заданий. Перед выполнением каждой контрольной работы студент должен изучить указанные темы (ДЕ), используя литературу и лекции.

При выполнении контрольных работ студент должен руководствоваться следующими указаниями:

- 1. Контрольные задачи следует располагать в порядке номеров, указанных в заданиях. Перед решением каждой задачи надо полностью переписать ее условие.
- 2. Решение задач следует излагать подробно, делая соответствующие ссылки на вопросы теории с указанием необходимых формул, теорем. Решение задач геометрического содержания должно сопровождаться чертежами.
- 3. Студент выполняет тот вариант контрольной работы, который совпадает с последней цифрой его учебного шифра. При этом, если предпоследняя цифра учебного шифра есть число нечетное (т. е. 1, 3, 5, 7, 9), то номера задач соответствующего варианта даны в таблице 1.

Если предпоследняя цифра учебного шифра есть число четное или ноль (m. e. 2, 4, 6, 8, 0), то номера задач для соответствующего варианта даны в таблице 2.

Литература

Основная литература

- 1. Письменный, Д.Т. Конспект лекций по высшей математике: полный курс / Д.Т. Письменный. 11-е изд. М.: Айрис-пресс, 2013. 608 с.
- 2. Сборник задач по высшей математике: 1 курс / К.Н. Лунгу и др. — 9-е изд. — М.: Айрис-пресс, 2011. - 576 с.
- 3. Махова, Н. Б. Неопределенные и определенные интегралы: курс лекций: учебное пособие / Н. Б. Махова, Ф. К. Мацур. Москва: РУТ (МИИТ), 2015.
- 68 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/188452. Режим доступа: Режим доступа: по подписке ПримГСХА. Текст: электронный.
- 4. Богомолов, Н. В. Математика: учебник / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. М. : Юрайт, 2019. 401 с. ISBN 978-5-534-07001-9. URL: https://biblio-online.ru/bcode/431945 Режим доступа: по подписке ПримГСХА. Текст: электронный.

Дополнительная литература

- 1. Зайцев И.А. Высшая математика: учеб. для вузов/ И.А. Зайцев. 4-е изд., стереотип. М.: Дрофа, 2005.- 398с.
- 2. Лунгу К.Н. Сборник задач по высшей математике / К.Н. Лунгу, В.П. Норин, Д.Т.Письменный, Ю.А.Шевченко. под ред. С.Н. Федина. 4 —е изд. М: Айрис пресс, 2006. 592 с.: ил. (Высшее образование).

Таблица №1

No		Контрольная работа предпоследняя цифра учебного шифра есть число нечетное (т. е. 1, 3, 5, 7,9)														
	пред	цпосл	едня	я циф	ppa y	чебно	го ші	іфра	есть ч	нисло	нечет	гное (т	г. е. 1,	3, 5,	7,9)	
1	2	12	22	32	42	52	62	73	83	93	104	114	124	134	144	152
2	3	13	23	33	43	53	63	74	84	94	105	115	125	135	145	153
3	4	14	24	34	44	54	64	75	85	95	106	116	126	136	146	156
4	5	15	25	35	45	55	65	76	86	96	107	117	127	137	147	151
5	6	16	26	36	46	56	66	77	87	97	108	118	128	138	148	158
6	7	17	27	37	47	57	67	78	88	98	109	119	129	139	149	160
7	8	18	28	38	48	58	68	79	89	99	110	120	130	140	150	155
8	9	19	29	39	49	59	69	80	90	100	101	111	121	131	141	154
9	10	20	30	40	50	60	70	71	81	91	102	112	122	132	142	157
0	1	11	21	31	41	51	61	72	82	92	103	113	123	133	143	159

Таблица №2

No		Контрольная работа														
	пред	цпосл	едня	я циф	pa y	чебно	го ши	фра (есть ч	исло	четно	е или	ноль	(т. е.	2, 4, 6	5 , 8 , 0)
1	5	14	23	31	40	51	66	77	88	93	100	119	123	130	141	155
2	6	13	24	32	47	52	67	78	89	94	101	118	125	131	150	151
3	7	12	25	36	42	53	68	79	90	95	102	117	126	132	142	158
4	8	11	26	33	43	56	69	80	81	96	103	116	127	133	143	152
5	1	18	27	39	49	60	65	71	82	97	104	115	128	134	144	153
6	2	19	28	38	48	57	70	72	83	98	105	114	129	135	145	159
7	3	20	29	40	50	52	61	73	84	99	106	113	130	136	146	155
8	4	11	30	34	43	58	62	74	86	100	107	112	121	137	147	157
9	10	16	21	35	44	55	63	80	85	91	108	120	122	138	148	154
0	9	17	22	37	41	54	64	75	87	92	109	111	124	139	149	160

Дисциплина и ее основные разделы, изучаемые на 1 курсе

№ ДЕ	Наимено вание дидактич еской единицы	Nº Tembi	Основные разделы ДЕ						
1	Линейная алгебра	1	Определители 2 и 3 порядка. Их вычисление. Миноры и алгебраические дополнения, разложение определителя по элементам какого-либо ряда. Решение систем линейных уравнений по формулам Крамера.						
	зйная а	2	<u>Матрицы</u> . Операции над матрицами. Обратная матрица. Ран матрицы.						
	Линс	3	Системы линейных уравнений. Матричная запись системы линейных уравнений. Правило Крамера. Система n- линейных уравнений с n- неизвестными. Метод Гаусса.						
2		4	Метод координат. Основные задачи аналитической геометрии (расстояние между двумя точками на плоскости, середина отрезка).						
	вис	5	Уравнение прямой на плоскости. Понятие об уравнении линии. Уравнение прямой с угловым коэффициентом. Уравнение прямой проходящей через данную точку в данном направлении, уравнение прямой проходящей через две данные точки. Взаимное расположение прямых на плоскости, угол между прямыми, условия параллельности и перпендикулярности.						
	кая геометр	6	Канонические уравнения кривых второго порядка: окружность, эллипс, гипербола, парабола. Их геометрические свойства, технические приложения геометрических свойств кривых.						
	Аналитическая геометрия	7	Плоскость и прямая в пространстве. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору. Общее уравнение плоскости, его частные виды. Угол между плоскостями; условия параллельности и перпендикулярности. Канонические и параметрические уравнения прямой в пространстве. Угол между прямыми. Угол между прямой и плоскостью.						
		8	Поверхности второго порядка. Цилиндрические поверхности. Канонические уравнения поверхностей второго порядка (сфера, конусы, эллипсоид, гиперболоиды, параболоиды). Геометрические свойства этих поверхностей, исследование их формы методом сечений.						

3		9	Векторы, основные понятия. Линейные операции над
			векторами, заданными геометрически (сложение, вычитание,
			умножение вектора на число). Понятие компланарности и
			коллинеарности векторов.
	Векторная алгебра	10	Векторы, заданные координатами. Проекция вектора на ось.
	екторнг алгебра		Разложение вектора по базису координатных осей. Координаты
	KT)		вектора. Длина вектора. Направляющие
	Be		косинусы. Условие коллинеарности.
		11	
		11	Произведение векторов. Скалярное, векторное и смешанное
			произведение векторов, их свойства, выражение через
4		10	координаты.
4		12	Введение в математический анализ. Определение функции.
			Область определения, способы задания. Бесконечно малые и
			бесконечно большие величины. Предел переменной величины,
			его свойства. Предел функции. Неопределенные выражения и
			способы их раскрытия. Первый и второй
			замечательные пределы. Непрерывность функции в точке.
			Точки разрыва.
		13	Дифференцирование функции одной переменной. Правила и
			формулы дифференцирования. Дифференциал функции.
			Основные теоремы дифференциального исчисления (правило
			Лопиталя, теоремы Ролля, Лагранжа). Применение
	8		дифференциального исчисления к исследованию функции
	ПИЗ		(возрастание и убывание функции, точки экстремума,
	еский анализ		выпуклость и вогнутость, точки перегиба, асимптоты).
	й а		Физические приложения.
	ЖИ	14	Интегральное исчисление функции одной переменной.
	ıec		Неопределенный интеграл: понятие первообразной, методы
	ГИч		интегрирования (замена переменной, по частям),
	Математич		
	Те		интегрирование выражений, содержащих квадратный
	Ma		трехчлен, интегрирование рациональных дробей,
		15	тригонометрических и иррациональных выражений.
		15	Определенный интеграл. Задачи, приводящие к понятию
			определенного интеграла (задача о нахождении площади
			криволинейной трапеции, пути при неравномерном движении,
			работы переменной силы), вычисление определенного
			интеграла (формула Ньютона – Лейбница), методы
			интегрирования, геометрические и физические приложения.
		16	Несобственные интегралы. Интегралы с бесконечными
			пределами интегрирования и от разрывных функций.
		17	Приближенные вычисления определенных интегралов.
			Методы вычисления по формулам прямоугольников,
			трапеций, Симпсона.
			Методы вычисления по формулам прямоугольников,

Tema:1 Элементы линейной алгебры (задачи 1-10). Перед выполнением задач необходимо изучить разделы 1, 2, 3 ДЕ-1(линейная алгебра).

1-10. Решить систему линейных уравнений:

- а) по формулам Крамера;
- б) матричным методом;
- в) сделать проверку найденного решения.

$$\int 2x - y + z = 3$$

$$\int 3x + 2y + 2z = 3$$

$$\int 3x + 2y + 2z = 3 \qquad \int 3x + 2y - 3z = 1$$

1.
$$(3x + 2y + 2z = 4)$$
 2. $(2x - y + z = 1)$ 3. $(2x + 3y - z = -1)$

2.
$$\{ 2x - y + z = 1 \}$$

3.
$$\{2x + 3y - z = -$$

$$x - y + 4z = -2$$

$$4x + 3y + 3z = 3$$

$$\left| x - y + 4z \right| = -2$$
 $\left| 4x + 3y + 3z \right| = 5$ $\left| x + 3y - 2z \right| = -2$

$$\int x + 2y + z = -1$$

$$(2x + 3y + z = -3)$$

$$\int 3x + 4y + z = 1$$

4.
$$\begin{cases} 2x - 3y - 2z = 0 \end{cases}$$

5.
$$\begin{cases} x - 2y + 3z = 0 \end{cases}$$

6.
$$\begin{cases} 2x - y - z = 2 \end{cases}$$

$$3x + y + 2z = 0$$

$$\int_{0}^{\infty} 3x - y - z = -7$$

$$\begin{cases} x + 2y + z = -1 & \{2x + 3y + z = -3 & \{3x + 4y + z = 1\} \\ 4. & \{2x - 3y - 2z = 0 & 5. \} \\ & \{x - 2y + 3z = 1 & 6. \} \end{cases}$$

$$\begin{cases} 3x + 4y + z = 1 \\ 2x - y - z = 2 \end{cases}$$

$$\begin{cases} 3x + 4y + z = 1 \\ 4x - 2y + 3z = 1 \end{cases}$$

$$\begin{cases} 3x + 4y + z = 1 \\ 4x - 2y + 3z = 1 \end{cases}$$

$$\begin{cases} 2x + 3y - 2z = 0 \\ x + 2y + z = 1 \end{cases}$$

$$\int 2x - y - 3z = 1$$

$$(x + 2y + 3z = 1)$$

7.
$$\begin{cases} 2x + 3y - 2z = 0 \\ x + 2y + z = -1 \\ 3x + 4y + 2z = 1 \end{cases}$$
8.
$$\begin{cases} 2x - y - 3z = 3 \\ x + y + 2z = -1 \\ 2x - y - z = 2 \end{cases}$$
9.
$$\begin{cases} x + 2y + 3z = 1 \\ 2x - y + 2z = 6 \\ x + y + 5z = -1 \end{cases}$$

8.
$$\begin{cases} x + y + 2z = -1 \\ 2x - y - z = 2 \end{cases}$$

9.
$$\begin{cases} 2x - y + 2z = 6 \\ x + y + 5z = -1 \end{cases}$$

10.
$$\begin{cases} 2x + y - z = -7 \\ x - 5y + 2z = 2 \end{cases}$$

(x-2y+3z=-1)

Решение типового примера

Решить систему линейных уравнений:

$$\begin{cases} 2x + y + z = 7 \\ 4x - y + 3z = 1 \\ 8x - 3y + 6z = -2 \end{cases}$$

- а) по формулам Крамера;
- б) матричным методом;

в) сделать проверку найденного решения.

Решение.

а) Для решения заданной системы линейных уравнений воспользуемся формулами Крамера:

$$x = \frac{\Delta x}{\Lambda};$$
 $y = \frac{\Delta y}{\Lambda};$ $z = \frac{\Delta z}{\Lambda}.$

Определитель третьего порядка вычисляется по правилу разложения по элементам первой строки:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a & a & a \end{vmatrix} = a \begin{vmatrix} a_{22} & a_{23} \\ a & a \end{vmatrix} - a \begin{vmatrix} a_{21} & a_{23} \\ a & a \end{vmatrix} + a \begin{vmatrix} a_{21} & a_{22} \\ a & a \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{22} & a_{23} \\ a_{11} & a_{22} & a_{23} \end{vmatrix} = a \begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} \end{vmatrix} - a \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{22} \end{vmatrix} + a \begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a \begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} + a \begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$$

Составим и вычислим главный определитель системы.

$$\Delta = \begin{vmatrix} 2 & 1 & 1 \\ 4 & -1 & 3 \\ 8 & -3 & 6 \end{vmatrix} = 2 \cdot \begin{vmatrix} -1 & 3 \\ -3 & 6 \end{vmatrix} = 1 \cdot \begin{vmatrix} 4 & 3 \\ 8 & 6 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & -1 \\ 8 & 6 \end{vmatrix} = 1 \cdot \begin{vmatrix} 4 & 3 \\ 8 & 6 \end{vmatrix}$$

$$=2(-6-(-9))-1\cdot(24-24)+1\cdot(-12-(-8))=2$$

Так как определитель системы отличен от нуля, то система имеет единственное решение. Для его отыскания вычислим вспомогательные определители $\Delta x, \Delta y, \Delta z$.

Для вычисления Δx в главном определителе первый столбец заменим столбцом свободных членов, для вычисления Δy и Δz соответственно второй и третий.

$$\Delta x = \begin{vmatrix} 7 & 1 & 1 \\ 1 & -1 & 3 \\ -2 & -3 & 6 \end{vmatrix} = 7 \cdot \begin{vmatrix} -1 & 3 & 1 & 3 & 1 & -1 \\ -3 & 6 & -1 \cdot & -2 & 6 \end{vmatrix} + 1 \cdot \begin{vmatrix} -1 & 3 & 1 & -1 \\ -2 & -3 & -1 \end{vmatrix} = 7 \cdot \begin{vmatrix} -1 & 3 & 1 & 3 & 1 & -1 \\ -3 & 6 & -2 & 6 & -2 & -3 \end{vmatrix}$$

$$=7(-6+9)-(6+6)+(-3-2)=4$$

$$\Delta y = \begin{vmatrix} 2 & 7 & 1 \\ 4 & 1 & 3 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 3 \\ -7 \cdot \begin{vmatrix} 4 & 3 \\ +1 \cdot \end{vmatrix} = \begin{vmatrix} 4 & 1 \\ 8 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} 8 & 6 \end{vmatrix} \quad \begin{vmatrix} 8 & 6 \end{vmatrix} \quad \begin{vmatrix} 8 & -2 \end{vmatrix}$$

$$=2(6+6)-7(24-24)+(-8-8)=8$$

$$\Delta z = \begin{vmatrix} 2 & 1 & 7 \\ 4 & -1 & 1 \\ 8 & -3 & -2 \end{vmatrix} = 2 \cdot \begin{vmatrix} -1 & 1 & 4 & 1 & 4 & -1 \\ -3 & -2 \begin{vmatrix} -1 \cdot \\ 8 & -2 \end{vmatrix} + 7 \cdot \begin{vmatrix} 8 & -3 \end{vmatrix} =$$

$$=2(2+3)-(-8-8)+7(-12+8)=-2$$

По формулам Крамера получим:

$$x = \frac{4}{2} = 2; y = \frac{8}{2} = 4; z = \frac{-2}{2} = -1.$$

$$\begin{cases} 2x + y + z = 7 \\ 4x - y + 3z = 1 \end{cases}$$

$$\begin{cases} 8x - 3y + 6z = -2 \end{cases}$$
(1)

Данную систему запишем в матричной форме и решим с помощью обратной матрицы.

Пусть A — матрица коэффициентов при неизвестных; X — матрица-столбец неизвестных x,y,z и H — матрица-столбец из свободных членов:

Левую часть системы (1) можно записать в виде произведения матриц $A \cdot X$, а правую в виде матрицы H. Следовательно имеем матричное уравнение

$$A \cdot X = H \,. \tag{2}$$

Если определитель матрицы A отличен от нуля, то матрица A имеет обратную матрицу A^{-1} . Умножим обе части равенства (2) слева на матрицу A^{-1} , получим

$$A^{-1} \cdot A \cdot X = A^{-1} \cdot H.$$

Так как $A^{-1} \cdot A = E$, где E – единичная матрица, а $E \cdot X = X$, то

$$X = A^{-1} \cdot H \,. \tag{3}$$

Формулу (3) называют матричной записью решения системы линейных уравнений. Чтобы воспользоваться формулой (3), необходимо сначала найти обратную матрицу по формуле

где ΔA - определитель матрицы коэффициентов, $\Delta A = \begin{vmatrix} 2 & 1 & 1 \\ 4 & -1 & 3 \\ 8 & -3 & 6 \end{vmatrix} = 2$,

$$A_{ij} = (-1)^{i+j} \cdot M$$
 - алгебраическое дополнение к элементам матрицы,

 M_{ij} - минор, определитель второго порядка, полученный путем вычеркивания i-ой строки и j-ого столбца.

Пример:

$$A_{23} = (-1)^{2+3} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} = - \begin{vmatrix} 2 & 1 \\ 8 & -3 \end{vmatrix} = 14.$$

Подставляя полученные значения алгебраических дополнений и ΔA в формулу (4), получим обратную матрицу

Заменив (3) соответствующими матрицами, имеем

где элементы неизвестной матрицы получены путем умножения строк обратной матрицы на соответствующие элементы матрицы свободных членов. Откуда x=2; y=4; z=-1.

в) Проверим правильность полученного решения, подставив его в каждое уравнение заданной системы:

$$2 \cdot 2 + 4 - 1 = 7$$
 $7 = 7$
 $4 \cdot 2 - 4 + 3 \cdot (-1) = 1$ \Rightarrow $1 = 1$.
 $8 \cdot 2 - 3 \cdot 4 + 6 \cdot (-1) = -2$ $-2 = -2$

Получили три верных равенства, система решена правильно.

Тема:2 Аналитическая геометрия на плоскости (задачи 11-20, 21-30). Перед выполнением задач необходимо изучить разделы 4,5,6 ДЕ-2(аналитическая геометрия).

11-20. Даны координаты вершин треугольника АВС.

Найти: 1. длину стороны АВ;

- 2. уравнение сторон АВ и ВС и их угловые коэффициенты.
- 3. угол при вершине В в радианах с точностью до двух знаков;
- 4. уравнение высоты СД;
- 5. уравнение медианы AE и координаты точки К пересечения этой медианы с высотой СД;
- 6. уравнение прямой, проходящей через точку К параллельно стороне АВ;

Решение данной задачи проиллюстрируйте на рисунке.

Решение типового примера

Даны координаты вершин треугольника ABC: A(4;3), B(16;-6), C(20;16). Найти: 1) длину стороны AB; 2) уравнение сторон AB и BC и их угловые коэффициенты; 3) угол при вершине B в радианах с точностью до двух знаков; 4) уравнение высоты СД; 5) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой СД; 6) уравнение прямой, проходящей через точку К параллельно стороне АВ.

Решение.

1) Расстояние d между двумя точками $A(x_1;y_1)$ и $B(x_2;y_2)$ определяется по формуле

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \tag{1}$$

Применяя (1), находим длину стороны AB:

$$AB = \sqrt{(16-4)^2 + (-6-3)^2} = \sqrt{144+81} = 15.$$

2) Уравнение прямой, проходящей через точки $A(x_1; y_1)$ и $B(x_2; y_2)$, имеет вид

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \tag{2}$$

Подставляя в (2) координаты точек A и B, получим уравнение стороны AB:

$$\frac{y-3}{-6-3} = \frac{x-4}{16-4};$$
 $\frac{y-3}{-9} = \frac{x-4}{12};$ $\frac{y-3}{-3} = \frac{x-4}{4};$

$$4y-12=-3x+12$$
; $3x+4y-24=0$ (AB).

Решив последнее уравнение относительно y, находим уравнение стороны AB в виде уравнения прямой с угловым коэффициентом:

$$4y=-3x+24;\;\;y=-rac{3}{4}+6$$
, откуда $k_{AB}=-rac{3}{4}.$

Подставив в (2) координаты точек B и C, получим уравнение прямой BC: 11x-2y-188=0 (BC), или y=5,5x-94, откуда $k_{BC}=5,5$.

3) Известно, что тангенс угла ϕ между двумя прямыми, угловые коэффициенты, которых соответственно равны k_1 и k_2 вычисляется по формуле

$$tg\phi = \frac{k_2 - k_1}{1 + k_1 k_2} \tag{3}$$

Искомый угол B образован прямыми AB и BC, угловые коэффициенты которых найдены: $k_{AB}=-\frac{3}{4};\;k_{BC}=5,5$. Применяя (3), получим

$$tgB = \frac{k_{AB} - k_{BC}}{1 + k_{AB}k_{BC}} = \frac{-\frac{3}{4} - 5.5}{1 + \left(-\frac{3}{2}\right) \cdot 5.5} = \frac{-25}{4 - 16.5} = 2$$
 $B \approx 63^{\circ}26'$, или $B \approx 1.11$ радо.

4) Уравнение прямой, проходящей через данную точку в заданном направлении, имеет вид

$$y - y_1 = k(x - x_1) \tag{4}$$

Высота CD перпендикулярна стороне AB. Чтобы найти угловой коэффициент высоты CD, воспользуемся условием перпендикулярности прямых $k_2 = -1/k_1$. Так как $k_{AB} = -3/4$, то $k_{CD} = 4/3$. Подставив в (4)

координаты точки C и найденный угловой коэффициент высоты, получим $y-16=\frac{4}{3}\big(x-20\big);\ 3y-48=4x-80\ ;\ 4x-3y-32=0\ \ (CD).$

5) Чтобы найти уравнение медианы AE, определим сначала координаты точки E, которая является серединой стороны BC, применяя формулы деления отрезка на две равные части:

$$x = \frac{x_1 + x_2}{2}; y = \frac{y_1 + y_2}{2}.$$
 (5)

Следовательно,

$$x_E = \frac{16+20}{2} = 18; \quad y_E = \frac{-6+16}{2} = 5; \quad E(18;5).$$

Подставив в (2) координаты точек A и E, находим уравнение медианы:

$$\frac{y-3}{5-3} = \frac{x-4}{18-4};$$
 $\frac{y-3}{2} = \frac{x-4}{14};$

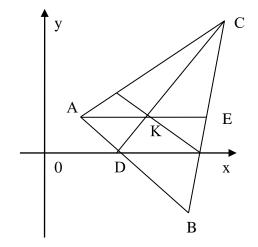
$$x - 7y + 17 = 0$$
 (AE).

Чтобы найти координаты точки пересечения высоты CD и медианы AE, решим систему уравнений

$$\begin{cases} 4x - 3y - 32 = 0, & \Rightarrow x = 11, y = 4; \\ x - 7y + 17 = 0 \end{cases} \Rightarrow x = 11, y = 4; \quad K(11;4).$$

6) Так как искомая прямая параллельна стороне AB, то ее угловой коэффициент будет равен угловому коэффициенту прямой AB. Подставив в (4) координаты найденной точки K и угловой коэффициент k=-3/4, получим

$$y-4=-\frac{3}{4}(x-11);$$
 $4y-16=-3x+33;$ $3x+4y-49=0$ (KF)



Треугольник ABC, высота CD, медиана AE, прямая KF и точка M построим в системе координат xOy на рисунке 1

Рисунок 1

21-30. Построить кривые второго порядка, приведя их к каноническому виду. В пунктах: а) для кривых найти координаты фокусов и эксцентриситет; б) для кривых найти фокус и уравнение директрисы.

21. a)
$$16x^2 + 25y^2 = 400$$

6)
$$x^2 + 6x + 4y + 13 = 0$$

22. a)
$$49x^2 + 4y^2 = 196$$

$$6) y^2 + 4x - 6y + 9 = 0$$

23. a)
$$3x^2 + 5y^2 = 15$$

$$6) x^2 + 8y + 8x + 16 = 0$$

24. a)
$$36x^2 + 9y^2 = 324$$

6)
$$x^2 - 4x + 2y + 2 = 0$$

25. a)
$$9x^2 + 16y^2 = 144$$

$$6) x^2 + 6x + 12y + 9 = 0$$

26. a)
$$5x^2 + 20y^2 = 100$$

6)
$$2x^2 - 12x + y + 18 = 0$$

27. a)
$$9x^2 + 4y^2 = 36$$

28. a)
$$16x^2 + 8y^2 = 128$$

29. a)
$$4x^2 + 36y^2 = 144$$

6)
$$y^2 - 14y + 2x + 43 = 0$$

6)
$$x^2 - 4x + y = 0$$

$$6) \ y^2 + 4y + 2x = 0$$

30. a)
$$25x^2 + 6y^2 = 150$$

6)
$$y^2 + 2x + 2y - 15 = 0$$

Решение типового примера.

Привести уравнение кривой к каноническому виду и построить кривую:

$$y^2 - 4y + 12x + 40 = 0$$
.

Решение:

Преобразуем уравнение:

$$(y^2 - 4y) + 12x + 40 = 0$$

Выражение в скобках дополним до полного квадрата:

$$(y^2 - 4y + 4) - 4 + 12x + 40 = 0$$

$$(y-2)^2 + 12x + 40 = 0$$

$$(y-2)^2 = -12(x+3)$$

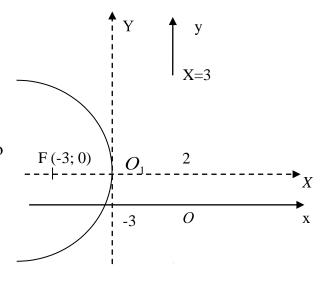


Рисунок 2

25

Введем новую систему координат, которая связана с исходными формулами преобразования:

$$\begin{cases} X = x + 3 \\ Y = y - 2 \end{cases}$$

Выполним параллельный перенос осей координат в новое начало координат $O_1(-3;2)$, при этом уравнение примет вид: $Y^2 = -12X$.

Данная кривая является параболой вида $Y^2 = 2pX$ с вершиной в точке O_1 ,

ветви влево (p<0). Фокус параболы и уравнение директрисы находятся по формулам: F(p/2;0); x=p/2. Следовательно, в новой системе координат фокус у данной параболы имеет координаты -F(-3;0), а директриса уравнение -X=3. Чертеж параболы на рисунке 2.

Тема:3 Элементы векторной алгебры (задачи 31-40). Перед выполнением

задач необходимо изучить вопросы 9,10,11 ДЕ-3(векторная алгебра).

31-40. Даны координаты вершин пирамиды АВСО.

Требуется:

- 1. записать векторы \overline{AB} , \overline{AC} , и \overline{AD} в системе орт и найти модули этих векторов;
- **2.** найти угол между векторами AB и AC;
- 3. найти площадь грани АВС;
- **4.** найти объем пирамиды *ABCD*.

31	A(2;-3;1)	B(6;1;-1)	C(4;8;-9)	D(2;-1;2)
32	A(5;-1;-4)	B(9;3;-6)	C(7;10;-14)	D(5;1;-3)
33	A(1;-4;0)	B(5;0;-2)	C(3;7;-10)	D(1;-2;1)
34	A(-3;-6;2)	B(1;-2;0)	C(-1;5;-8)	D(-3;-4;3)
35	A(-1;1;-5)	B(3;5;-7)	C(1;12;-15)	D(-1;3;-4)
36	A(-4;2;-1)	B(0;6;-3)	C(-2;13;-11)	D(-4;4;0)
37	A(0;4;3)	B(4;8;1)	C(2;15;-7)	D(0;6;4)
38	A(-2;0;-2)	B(2;4;-4)	C(0;11;-12)	D(-2;2;-1)
39	A(3;3;-3)	B(7;7;-5)	C(5;14;-13)	D(3;5;-2)
40	A(4;-2;5)	B(8;2;3)	C(6;9;-5)	D(4;0;6)

Решение типового примера

Даны координаты вершин пирамиды ABCD: A(2;1;0);B(3;-1;2), C(13;3;10), D(0;1;4). Требуется: 1)записать векторы \overrightarrow{AB} , \overrightarrow{AC} , и \overrightarrow{AD} в системе орт и найти модули этих векторов; 2)найти угол между векторами AB и \overrightarrow{AC} ; 3) найти площадь грани ABC; 4) найти объем пирамиды ABCD; 5) уравнение плоскости Q, проходящей через точки A, B, и C; 6) канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости Q,; 7) точки пересечения полученной прямой с плоскостью Q,и с координатными плоскостями xOy, xOz, yOz;

Решение.

1) Произвольный вектор a может быть представлен в системе орт $\dot{i}, \dot{j}, \dot{k}$ следующей формулой:

$$\vec{a} = a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot k, \tag{1}$$

где a_x, a_y, a_z - проекции вектора a на координатные оси Ox, Oy, Oz,

 \vec{i} , \vec{j} , \vec{k} - единичные векторы, направления которых совпадают с

положительным направлением осей Ox,Oy,Oz. Если даны точки $M_1(x_1;y_1;z_1)$

и $M_2(x_2;y_2;z_2)$, то проекции вектора $a=M_1M_2$ на координатные оси находятся по формулам:

$$a_x = x_2 - x_1; \quad a_y = y_2 - y_1; \quad a_z = z_2 - z_1.$$
 (2)

Тогда

$$\overrightarrow{M_1 M_2} = (x_2 - x_1) \cdot \vec{i} + (y_2 - y_1) \cdot \vec{j} + (z_2 - z_1) \cdot \vec{k}$$
 (3)

Подставив в (3) координаты точек A и B, получим вектор \overrightarrow{AB} :

$$\overrightarrow{AB} = (3-2)\cdot \vec{i} + (-1-1)\cdot \vec{j} + (2-0)\cdot \vec{k} = \vec{i} - 2\vec{j} + 2\vec{k}$$

Аналогично, получим:

$$\overrightarrow{AC} = 11\overrightarrow{i} + 2\overrightarrow{j} + 10\overrightarrow{k}$$
; $\overrightarrow{AD} = -2\overrightarrow{i} + 4\overrightarrow{k}$.

Если вектор \vec{a} задан формулой (1), то его модуль вычисляется по формуле

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \ . \tag{4}$$

Применяя (4), получим модули найденных векторов:

$$|\overrightarrow{AB}| = 3, |\overrightarrow{AC}| = 15, = 2\sqrt{5}.$$

2) Косинус угла между двумя векторами равен скалярному произведению этих векторов, деленному на произведение их модулей.

$$\cos A = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right|} \tag{5}$$

Находим скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 1.11 + (-2) \cdot 2 + 2.10 = 27.$$

Модули этих векторов уже найдены $|\overrightarrow{AB}| = 3$, $|\overrightarrow{AC}| = 15$.

Следовательно,

$$\cos A = \frac{27}{3.15} = \frac{3}{5} = 0.6$$
; $A = 53^0 8'$.

3) Площадь грани ABC равна половине площади параллелограмма, построенного на векторах AB и \overrightarrow{AC} . Обозначим векторное произведение вектора AB на вектор AC через вектор P. Тогда, как известно, модуль вектора выражает собой площадь параллелограмма, построенного на векторах AB и AC, а площадь грани ABC будет равна половине модуля вектора P:

$$\vec{P} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 2 \\ 11 & 2 & 10 \end{vmatrix} = -24\vec{i} + 12\vec{j} + 24\vec{k} ;$$

$$|\vec{P}| = 36$$
; $S_{ABC} = \frac{1}{2} \cdot 36 = 18$ кв.ед.

4) Объем параллелепипеда, построенного на трех некомпланарных векторах, равен абсолютной величине их смешанного произведения. Вычислим смешанное произведение $(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$:

$$(\overrightarrow{A}\overrightarrow{A} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} 1 & -2 & 2 \\ 11 & 2 & 10 \\ -2 & 0 & 4 \end{vmatrix} = 144.$$

Следовательно, объем параллелепипеда равен 144 куб.ед.,

объем заданной пирамиды ABCD равен $\frac{1}{6}$ объема параллелепипеда ,т.е.

$$V_{ABCD} = \frac{1}{6} \cdot 144 = 24$$
 куб.ед.

<u>Tema:4</u> Аналитическая геометрия в пространстве (задачи 41-50). Перед выполнением задач необходимо изучить раздел 7 ДЕ-2 (аналитическая геометрия).

41-50. Даны координаты точек A, B, C и M.

Найти: 1. уравнение плоскости Q, проходящей через точки A, B, и C; 2.канонические уравнения прямой, проходящей через точку M перпендикулярно плоскости Q;

3. точки пересечения полученной прямой с плоскостью Q, и с координатными плоскостями xOy, xOz, yOz;

41	A(3;-1;5)	B(7;1;1)	C(4;-2;1)	M(5;1;0)
42	A(-1;2;3)	B(3;4;-1)	C(4;-2;1)	M(7;0;1)
43	A(2;-3;7)	B(6;-1;3)	C(3;-4;3)	M(-2;3;-2)
44	A(0;-2;6)	B(4;0;2)	C(1;-3;2)	M(-1;5;6)
45	A(-3;1;2)	B(1;3;-2)	C(-2;0;-2)	M(3;4;0)
46	A(-2;3;1)	B(2;5;-3)	C(-1;2;-3)	M(-3;2;-3)
47	A(-4;0;8)	B(0;2;4)	C(-3;-1;4)	M(7;1;2)
48	A(1;4;0)	B(5;6;-4)	C(2;3;-4)	M(1;4;1)
49	A(4;-4;9)	B(8;-2;5)	C(5;-5;5)	M(4;2;-1)
50	A(5;5;4)	B(9;7;0)	C(6;4;0)	M(1;3;6)

Решение типового примера

Даны координаты точек A(0;-2;-1), B(2;4;-2), C(3;2;0) и M(-11;8;10).

Найти: 1) уравнение плоскости Q, проходящей через точки A, B, и C;

2) канонические уравнения прямой, проходящей через точку M перпендикулярно плоскости Q,; 3) точки пересечения полученной прямой с плоскостью Q,и с координатными плоскостями xOy, xOz, yOz; Peweenue.

1) Уравнение плоскости. Проходящей через три данные точки $A(x_1;y_1;z_1), B(x_2;y_2;z_2), C(x_3;y_3;z_3),$ имеет вид

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$
 (1)

Подставив в (1) координаты точек A, B и C, получим:

$$\begin{vmatrix} x - 0 & y + 2 & z + 1 \\ 2 - 0 & 4 + 2 & -2 + 1 \\ 3 - 0 & 2 + 2 & 0 + 1 \end{vmatrix} = 0; \quad \begin{vmatrix} x & y + 2 & z + 1 \\ 2 & 6 & -1 \\ 3 & 4 & 1 \end{vmatrix} = 0.$$

Разложим определитель по элементам первой строки:

$$10x - 5(y + 2) - 10(z + 1) = 0.$$

Сократив на 5, получим уравнение искомой плоскости Q:

$$2x - y - 2z - 4 = 0 (Q). (2)$$

2) Канонические уравнения прямой в пространстве имеет вид

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p},\tag{3}$$

где x_0 , y_0 , z_0 - координаты точки, через которую проходит прямая (3), а m,n,pнаправляющие коэффициенты этой прямой. По условию прямая проходит
через точку M(-11;8;10) и перпендикулярна плоскости Q. Следовательно,
подставив в (3) координаты точки M и заменив соответственно числа m,n,pчислами 2;-1;-2 (коэффициенты общего уравнения плоскости (2)), получим

$$\frac{x+11}{x+1} = \frac{y-8}{x+1} = \frac{z-10}{x+1}.$$
 (4)

3) Чтобы найти точки пересечения прямой (4) с плоскостью (2), запишем сначала уравнения прямой (4) в параметрическом виде. Пусть

 $\frac{x+11}{x} = \frac{y-8}{y-1} = \frac{z-10}{y-1} = t$, где t- некоторый параметр. Тогда уравнения прямой

$$2 -1 -2$$

можно записать так:

$$x = 2t - 11; \ y = -t + 8; \ z = -2t + 10.$$
 (5)

Подставляя (5) в (2), получим значение параметра t:

$$2(2t-11)-(-t+8)-2(-2t+10)-4=0 \Rightarrow 4t-22+t-8+4t-20-4=0 \Rightarrow t=6$$

Подставив в (5) t=6, находим координаты точки P пересечения прямой (4) с плоскостью (2):

$$x=1;$$
 $y=2;$ $z=-2;$ $P(-1;2;-2).$

Пусть P_1 - точка пересечения прямой (4) с координатной плоскостью xOy;

уравнение этой плоскости z=0. При z=0 из (5) получаем

$$t = 5;$$
 $x = -1;$ $y = 3;$ $P_1(-1;3;0).$

Пусть P_2 - точка пересечения прямой (4) с плоскостью xOz; уравнение этой

плоскости y=0. При y=0 из (5) получаем

$$t = 8;$$
 $x = 5;$ $z = -6;$ $P_2(5;0;-6).$

Пусть P_3 - точка пересечения прямой (4) с плоскостью yOz.

Уравнение этой плоскости x=0. При x=0 из (5) получаем

$$t = 5,5;$$
 $y = 2,5;$ $z = -1;$ $P_3(0;2,5;-1).$

Тема:5 Предел функции. Непрерывность функции, точки разрыва. (задачи 51-60,61-70). Перед выполнением задач необходимо изучить раздел 12 ДЕ-4(математический анализ) рабочей программы.

51-60. Найти указанные пределы.

$$2x^2 + x - 1$$

51. 1)
$$\lim_{x \to x_0} x^2 - 3x - 4$$
, a) $x_0 = 1$, b) $x_0 = -1$; b) $x_0 = \infty$;

2)
$$\lim_{x\to 0} \frac{tg2x}{\sin 4x}$$
; 3) $\lim_{x\to \infty} \left(1 + \frac{5}{3x}\right)^{x-3}$

52. 1)
$$\lim_{x \to x_0} \frac{x^2 - 3x + 2}{-3x^2 - x + 4}$$
, a) $x_0 = -2$, 6) $x_0 = 1$, B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{\sin 4x}{2x \cdot \cos 3x};$$
 3)
$$\lim_{x \to \infty} \left(1 + \frac{2}{4x}\right)^{x+5}$$

53. 1)
$$\lim_{x \to x_0} \frac{2x^2 - x - 10}{x^2 + 3x + 2}$$
, a) $x_0 = 1$, 6) $x_0 = -2$, B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{x \cdot tg3x}{-\sin 2x};$$
 3)
$$\lim_{x \to \infty} \left(1 - \frac{6}{7x}\right)^{2x-1}$$

54. 1)
$$\lim_{x \to x_0} \frac{x^2 - 3x + 2}{-3x^2 - x + 14}$$
, a) $x_0 = -2$, 6) $x_0 = 2$, B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{\sin 5x \cdot tg3x}{x^2}; \quad 3) \lim_{x \to \infty} \left(1 - \frac{3}{8x}\right)^{3x+5}$$

55. 1)
$$\lim_{x \to x_0} \frac{x^2 + 5x + 4}{2x^2 - 3x + 5}$$
, a) $x_0 = 1$, 6) $x_0 = -1$, B) $x_0 = \infty$;

2)
$$\lim_{t \to 0} \frac{\sin 6x}{tg2x};$$
 3)
$$\lim_{x \to \infty} \left(1 + \frac{2}{3x}\right)^{x-4}$$

56. 1)
$$\lim_{\substack{x \to x_0 \ -x^2 + 3x - 2}} \frac{4x^2 - 5x + 1}{-x^2 + 3x - 2}$$
, a) $x_0 = 2$; 6) $x_0 = 1$; B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{2x \cdot \cos 5x}{\sin 3x}; \quad 3) \lim_{x \to \infty} \left(1 + \frac{7}{4x}\right)^{2x+3}$$

57. 1)
$$\lim_{x \to x_0} \frac{x^2 + 5x + 6}{3x^2 - x - 14}$$
, a) $x_0 = 2$, 6) $x_0 = -2$, B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{2x \cdot tg4x}{-\sin 6x};$$
 3)
$$\lim_{x \to \infty} \left(1 - \frac{9}{5x}\right)^{x-5}$$

58. 1)
$$\lim_{x \to x_0} \frac{2x^2 - 7x + 6}{-x^2 - x + 6}$$
, a) $x_0 = -1$, 6) $x_0 = 2$, B) $x_0 = \infty$;

2)
$$\lim_{t \to 0} \frac{\sin 8x}{tg + 10x};$$
 3)
$$\lim_{x \to \infty} \left(1 - \frac{4}{10x} \right)^{x+1}$$

59. 1)
$$\lim_{x \to x_0} \frac{x^2 - 6x - 7}{3x^2 + x - 2}$$
, a) $x_0 = -2$, 6) $x_0 = -1$, B) $x_0 = \infty$;

2)
$$\lim_{x \to 0} \frac{\sin^2 9x}{x + tg5x}$$
; 3) $\lim_{x \to \infty} \left(1 + \underbrace{4}_{5x} \right)^{3x+2}$

60. 1)
$$\lim_{x \to x_0} \frac{x^2 - 5x - 14}{2x^2 + x - 6}$$
, a) $x_0 = -1$, 6) $x_0 = -2$, B) $x_0 = \infty$;

2)
$$\lim_{x\to 0} \frac{4x \cdot \cos 7x}{\sin 2x}; \quad 3) \lim_{x\to \infty} \left(1 + \frac{8}{9x}\right)^{x-2}$$

Решение типового примера

Найти указанные пределы:

1)
$$\lim_{x \to 3} \frac{2x^2 - 3x - 9}{x^2 - x - 6}$$
, a) $x_0 = 3$, 6) $x_0 = \infty$;

Решение.

а) При подстановке предельного значения x=3 получается неопределенность вида $\begin{bmatrix} 0 \\ \hline 0 \end{bmatrix}$.

$$2x^2 - 3x - 9 = \begin{bmatrix} 0 \end{bmatrix}$$

$$\lim_{x\to 3} x^2 - x - 6 \quad \begin{bmatrix} 0 \end{bmatrix}$$

Для избавления от этого типа неопределенности в нашем случае представим квадратные трехчлены числителя и знаменателя в видепроизведения линейных множителей, воспользовавшись известной формулой:

$$ax^{2} + bx + c = a(x - x)(x - x),$$

где x_1, x_2 - корни квадратного трехчлена $ax^2 + bx + c = 0$.

Для числителя имеем: $2x^2 - 3x - 9 = 0$, найдем дискриминант :

$$D = b^2 - 4ac = (-3)^2 - 4 \cdot 2 \cdot (-9) = 81$$

по формуле корней получим:

$$x = \frac{-b - \sqrt{D}}{\sqrt{81}} = \frac{-(-3) - \sqrt{81}}{\sqrt{81}} = \frac{3 - 9}{\sqrt{81}} = \frac{3}{\sqrt{81}} = \frac{3 - 9}{\sqrt{81}} = \frac{3 - 9}{\sqrt{81}}$$

Следовательно,
$$2x^2 - 3x - 9 = 2(x - 3)\left(x - \frac{2}{3}\right)$$
.

Аналогично для знаменателя: $x^2 - x - 6 = (x - 3)(x + 2)$.

Теперь условие задачи можно переписать в следующем виде:

$$\lim_{x \to 3} \frac{2x^2 - 3x - 9}{x^2 - x - 6} = \lim_{x \to 3} \frac{2(x - 3)\binom{x - 2}{3}}{(x - 3)(x + 2)} = \lim_{x \to 3} \frac{2x + 3}{x + 2} = \frac{2 \cdot 3 + 3}{3 + 2} = \frac{9}{5}.$$

$$\mathbf{B})\lim_{x\to\infty}\frac{2x^2-3x-9}{x^2-x-6}=\left[\frac{\infty}{\infty}\right].$$

Здесь сталкиваемся с неопределенностью $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$, избавиться от которой

можно вынесением за скобки в числителе и знаменателе дроби старшей степени переменной:

степени переменной:
$$\lim_{x\to\infty} \frac{2x^2 - 3x - 9}{x^2 - x - 6} = \lim_{x\to\infty} \frac{\left(\frac{x^2}{2} - \frac{3}{2} - \frac{9}{2} \right)}{x^2 \left(1 - \frac{1}{2} - \frac{6}{2} \right)} = \frac{2 - 0 - 0}{1 - 1 - 6} = 2.$$
2) li
$$\lim_{x\to\infty} \frac{2x^2 - 3x - 9}{x^2 - x - 6} = \lim_{x\to\infty} \frac{\left(\frac{x}{2} - \frac{3}{2} - \frac{9}{2} \right)}{x^2 \left(1 - \frac{1}{2} - \frac{6}{2} \right)} = \frac{2 - 0 - 0}{1 - 0 - 0} = 2.$$

 $x\rightarrow 0$

Решение.

$$\lim_{x \to 0} \frac{x \cdot \sin 2x}{tg^2 4x} = \frac{0}{0}$$

В данном случае для освобождения от неопределенности будем использовать первый замечательный предел и одно из его очевидных следствий:

$$\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1; \lim_{\alpha \to 0} \frac{tg\alpha}{\alpha} = 1.$$

Решение примера будет выглядеть следующим образом:

$$\lim_{x \to 0} \frac{x \cdot \sin 2x}{tg^2 4x} = \lim_{x \to 0} \frac{x \cdot \sin 2x}{tg + 4x \cdot tg 4x} = \lim_{x \to 0} \frac{1}{4} \cdot \frac{4x}{tg + 4x} \cdot \frac{\sin 2x}{2x} \cdot \frac{4x}{tg + 4x} \cdot \frac{1}{2} = \frac{1}{8}$$

3)
$$\lim_{x\to\infty} \left(1+\frac{3}{x}\right)^{5x+1}$$

Решение.

Здесь сталкиваемся с неопределенностью $[1^{\infty}]$, преобразуем ко второму замечательному пределу $\lim_{\alpha\to\infty} \left(1+\frac{1}{\alpha}\right)^{\alpha} = e$. Для этого положим $\frac{3}{x}=\frac{1}{\alpha}$, где $\alpha\to\infty$ при $x\to\infty$, тогда $x=3\alpha$.

Выразив основание и показатель степени через α, получим:

$$\lim_{x \to \infty} \left(\frac{3}{1+x} \right)^{5x+1} = \lim_{\alpha \to \infty} \left(1 + \frac{1}{\alpha} \right)^{15\alpha+1} = \left[\lim_{\alpha \to \infty} \left(1 + \frac{1}{\alpha} \right)^{\alpha} \right]^{15} \cdot \lim_{\alpha \to \infty} \left(1 + \frac{1}{\alpha} \right)^{1} = e^{15} \cdot 1 = e^{15}$$

61-65. Даны функция y=f(x) и значения аргумента x_1 и x_2 . Требуется:

1) установить, является ли данная функция непрерывной или разрывной при данных значениях аргумента;

- 2) найти односторонние пределы в точках разрыва;
- 3) построить график данной функции.

$$61.6y = \frac{4x}{x+1}; \quad x_1 = -1, \quad x_2 = 3$$

$$62.6y = \frac{x}{x-4}; \quad x_1 = 4, \quad x_2 = 2$$

$$63.6^{y} = \frac{2x}{x-3}; \quad x_{1} = 3, \quad x_{2} = -2$$

$$04. \quad y = \frac{2x}{x+3}; \quad x_{1} = -3, \quad x_{2} = 5$$

$$0.5 \quad y = \frac{3x}{x-2}; \quad x_{1} = 3, \quad x_{2} = 2$$

64.
$$y = \frac{2x}{x+3}$$
; $x_1 = -3$, $x_2 = 5$

65.

66-70. Функция у задана различными аналитическими выражениями для различных областей изменения аргумента х.

Требуется:

- 1) найти точку разрыва;
- 2) найти односторонние пределы и скачок функции в точках разрыва;
- 3) сделать чертеж.

66.
$$y = \begin{cases} x^2 - 1 & npu & x < 0 \\ 2x + 1 & npu & x \ge 0 \end{cases}$$

69.
$$y = \begin{cases} x + 4 & npu \quad x < -3 \\ 5 - x^2 & npu \quad x \ge -3 \end{cases}$$

67.
$$y = \begin{cases} x^2 + 1 & npu & x \le 2\\ 4 - x & npu & x > 2 \end{cases}$$

69.
$$y = \begin{cases} x+4 & npu & x < -3 \\ 5-x^2 & npu & x \ge -3 \end{cases}$$
70. $y = \begin{cases} x+6 & npu & x < -2 \\ x^2-1 & npu & x \ge -2 \end{cases}$

68.
$$y = \begin{cases} 2x^2 & npu \quad x < 1 \\ x+1 & npu \quad x \ge 1 \end{cases}$$

Решение типового примера

а) Дана функция $y = \frac{3x}{x+2}$; и значения аргумента $x_1 = -2$, $x_2 = 3$.

Требуется:

- 1) установить, является ли данная функция непрерывной или разрывной при данных значениях аргумента;
- 2) найти односторонние пределы в точках разрыва;
- 3) построить график данной функции.

Решение.

Если находится предел функции y=f(x) при условии, что аргумент x,

стремится к предельному значению a, может принимать только такие значения,

которые меньше a, то этот предел, если он существует, называется левосторонним пределом данной функций в точке x=a и обозначается

$$\lim_{\substack{x \to a \\ x < a}} y = \lim_{x \to a \to 0} y.$$

Аналогично, если аргумент x, стремится к предельному значению a, может принимать только такие значения, которые больше a, то этот предел, если он существует, называется правосторонним пределом данной функций в точкеx=a и обозначается

$$\lim_{\substack{x \to a \\ x > a}} y = \lim_{x \to a+0} y.$$

Функция y=f(x) непрерывна при x=a, если выполняются следующие условия:

- 1) функция определена не только в точке a, но и в некотором интервале, содержащем эту точку;
- 2) функция имеет при $x \to a$ конечные и равные между собой односторонние пределы;
- 3) односторонние пределы при $x \to a$ совпадают со значением функции в точке a. т.е.

$$\lim_{x\to a-0} y = \lim_{x\to a+0} y = f(a).$$

Если для данной функции y=f(x) в данной точке x=a хотя бы одно из перечисленных трех условий не выполняется, то функция называется разрывной в точке x=a.

Разрыв функции в точке x=a называется разрывом первого рода, если односторонние пределы слева и справа существуют, но не равны между собой. Если же хотя бы один из односторонних пределов не существует в этой точке,

то точка x=a называется разрывом второго рода.

При x=-2 данная функция не существует: в этой точке функция терпит разрыв. Определим односторонние пределы функции при $x\to -2$ слева и справа

$$\lim_{x \to -2-0} y = \lim_{x \to -2-0} \frac{3x}{x+2} = +\infty,$$

$$\lim_{x \to -2-0} y = \lim_{x \to -2+0} \frac{3x}{x+2} = -\infty,$$

Таким образом, при x=-2 данная функция имеет разрыв второго рода, т.к. односторонние пределы в этой точке не существуют.

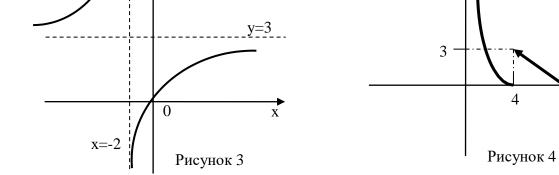
При x=3 данная функция непрерывна, так как выполняются все три условия непрерывности функции.

$$\lim_{x \to 3-0} \frac{3x}{x+2} = \lim_{x \to 3+0} \frac{3x}{x+2} = \frac{9}{5}.$$

Данная функция является дробно-линейной. Известно, что графикомдробнолинейной функции служит равносторонняя гипербола. Асимптоты, которой параллельны осям координат. Для построения составим таблицу

X	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
y	9/2	5	6	9	±∞	-3	0	1	3/2	9/5	2	15/7	9/4

График функции показан на рисунке 3



б) Функция: $y = \begin{cases} (x-4)^2 & npu & x \le 4 \\ \\ 7-x & npu & x > 4 \end{cases}$ задана различными аналитическими

выражениями для различных областей изменения аргумента x.

Требуется:

- 1) найти точку разрыва;
- 2) найти односторонние пределы и скачок функции в точках разрыва; сделать чертеж.

Решение.

Данная функция определена и непрерывна в интервалах $(-\infty;4] \cup (4;+\infty)$. При x=4 меняется аналитическое выражение функции. И только в этой точке функция может иметь разрыв. Определим односторонние пределы в точке x=4:

$$\lim_{x \to 4-0} y = \lim_{\substack{x \to 4 \\ x < 4}} (x-4)^2 = 0; \qquad \lim_{x \to 4+0} y = \lim_{\substack{x \to 4+0 \\ x > 4}} (7-x) = 3$$

Т.к. односторонние пределы не равны между собой, то в этой точке функция имеет разрыв первого рода.

Скачком функции в точке разрыва называется абсолютная величина разности между ее правым и левым предельными значениями. Следовательно, в точке x=4 скачок функции $\Delta = |3-0| = 3$.

График функции показан на рисунке 4.

Тема:6 Дифференцирование функции одной переменной. Применение производной к исследованию функции (задачи 71-80,81-90). Перед выполнением задач необходимо изучить раздел 13 ДЕ-4(математический анализ).

71-80. Найти производные функции:

71. 1)
$$y = \sqrt[4]{x} \cdot \ln x \cdot \sin x$$
 3) $y = \frac{x^4}{e^{2x+1}}$ 5) $x^2 y^2 - 2xy + 1 = 0$

$$3) \ \ y = \frac{x^4}{e^{2x+1}}$$

$$5) \ x^2 y^2 - 2xy + 1 = 0$$

2)
$$y = (\cos^2 3x + 7)^4$$

 $4) \ y = x^{3x}$

$$72. 1) \ y = 2^x \cdot \sqrt{x}$$

3) $y = \frac{\arcsin 7x}{x^5}$ 5) $x^3 + 2xy = y^3 - 1$

$$2) y = \ln \cos^3 x$$

4) $y = x^{x^2}$

73. 1)
$$y = \frac{tgx}{\sqrt[3]{x} + 7x}$$

3) $y = 4^{3x} \cdot \cos 2x$ 5) $x^2y - 4x + 2y = 7$

2)
$$y = \ln arctgx^3$$

4) $y = x^{4x}$

74. 1)
$$y = \frac{\cos x}{x^5}$$

3) $y = 3^x \cdot arctg8x$ 5) $2x^3 - 4y^3x = 5y$

2)
$$y = \sqrt{\ln x^2 + 1}$$

 $4) \ \ y = x^{\sin x}$

3 3

75. 1)
$$y = \frac{1}{x^3} \cdot 3$$

3) $y = \frac{1}{\sqrt{x+5}}$

5) 2x y - 3x + 5y = 1

2)
$$y = \sin \ln x^4$$

4) $y = (\cos x)^x$

76. 1)
$$y = \sqrt{x} \cdot \ln x$$

3) $y = \cos e^{2x}$ 5) $y^2 = xy - 3x^3$

$$2) \quad y = \frac{\arcsin 7x}{x^3 + 1}$$

4) $y = x^{2x}$

77. 1)
$$y = \frac{9x+1}{3+x^9}$$

3) $y = \sqrt[5]{tg5x + 3}$ 5) $xy^2 - 3x^2 = 4y^2 + 6$

2)
$$y = 2^{8x} \cdot ctgx$$

 $y = (\sin x)^x$

78. 1)
$$y = \frac{tgx}{x^5 + 7x}$$

3) $y = 4^{3x} \cdot \cos 2x$ 5) $x^2 y - 4x + 2y = 7$

$$2) y = \ln^2 arctgx$$

$$4) \ y = x^{4x}$$

79. 1)
$$y = \sqrt[5]{x} \cdot \log_3 x$$

$$3) \ \ y = \frac{\sqrt{1 - 4x^2}}{ctg7x}$$

3)
$$y = \frac{\sqrt{1 - 4x^2}}{ctg7x}$$
 5) $x^3y - 8xy + y^2 = 8$

2)
$$y = \arcsin 2x$$

$$4) y = (\cos x)^{3x}$$

$$80. 1) \quad y = 5^x \cdot \sin x$$

$$3) \quad y = \frac{ctg \, 2x}{\sqrt[3]{x}}$$

3)
$$y = \frac{ctg \, 2x}{\sqrt[3]{x}}$$
 5) $x^3 y - 8xy = y^2 + 3$

2)
$$y = e^{\arccos 3x} + \frac{1}{x^2}$$
 4) $y = x^{\cos x}$

При решении задач 71-80 будем использовать таблицу 1 - производных основных элементарных функции и правила дифференцирования суммы, разности, произведения, дроби и теорему о производной сложной функции:

1.
$$[u \pm v]' = u' \pm v';$$

$$2. [u \cdot v]' = u'v + uv';$$

$$3. \frac{[u]'}{v} = \frac{u'v - uv'}{v^2};$$

4.если задана сложная функция y = f(u), где $u = \varphi(x)$, то есть $y = f(\varphi(x))$;

если каждая из функций дифференцируема по своему аргументу, то

$$y' = y_u \cdot u_x$$

Таблица 1.

№п/п	функция	производная
1	y=const	y' = 0
2	y = x	y' = 1
3	$y = x^n$	$y'=nx^{n-1}$
4	y=lnx	$y' = \frac{1}{x}$
5	$y = a^x$	$y' = a^x \ln a$
6	$y = e^x$	$y'=e^x$
7	$y = \sin x$	$y' = \cos x$
8	$y = \cos x$	$y' = -\sin x$
9	y = tgx	$y' = \frac{1}{\cos^2 x}$

10	y = ctgx	$y' = -\frac{1}{\sin^2 x}$
----	----------	----------------------------

11	$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
12	$y = \arccos x$	$y' = -\frac{1}{\sqrt{1 - x^2}}$
13	y = arctgx	$y' = \frac{1}{1+x^2}$
14	y = arcctgx	$y' = -\frac{1}{1+x^2}$

Решение типового примера

Найти производные следующих функций:

a)
$$y = (\sqrt[3]{x} + 2) \cdot \sin x$$
.

Решение.

Воспользуемся правилом дифференцирования произведения и формулами производной степенной и тригонометрической функции:

$$[u \cdot v]' = u'v + uv'; (x^n)' = nx^{n-1}; (\sin x)' = \cos x, \text{ a также } (const)' = 0.$$

Преобразуем $\sqrt[3]{x} = x^{\frac{1}{3}}$, получим:

$$y' = \left(x^{3} + 2\right)' \cdot \sin x + \left(3x + 2\right) \cdot \left(\sin x\right)' = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \left(3x + 2\right) \cdot \cos x = \frac{1}{3}x^{-3} \cdot \sin x + \frac{1}{3}x^{$$

$$= \frac{\sin x}{3 \cdot \sqrt[3]{x^2}} + (\sqrt[3]{x} + 2) \cdot \cos x$$

$$y' = \frac{\sin x}{3 \cdot \sqrt[3]{x^2}} + \left(\sqrt[3]{x} + 2\right) \cdot \cos x.$$

6)
$$y = \ln^2(2x^4 - 5)$$

Решение.

Имеем сложную функцию y = f(u), где $u = \varphi(x)$. Тогда $y' = y'_u \cdot u'_x$,

Воспользуемся производной сложных функций:

$$u^n = nu^{n-1} \cdot u'; \qquad \left(\ln u\right)' = \frac{u'}{u}$$

Производная заданной функции:

$$y' = 2\ln\left(2x^4 - 5\right) \cdot \left(\ln\left(2x^4 - 5\right)'\right) = 2\ln\left(2x^4 - 5\right) \cdot \frac{\left(2x^4 - 5\right)'}{2x^4 - 5} = 2\ln\left(2x^4 - 5\right) \cdot \frac{8x^3}{2x^4 - 5}$$

$$y' = \frac{16x^3 \cdot \ln(2x^4 - 5)}{2x^4 - 5}.$$

$$\mathbf{B}) \ \ \mathbf{y} = \frac{e^{\cos x}}{tgx}$$

Решение.

Воспользуемся правилом дифференцирования частного функций и производной сложной функций:

$$\begin{bmatrix} u \\ - \end{bmatrix}' = \frac{u'v - uv'}{v^2} \qquad \begin{pmatrix} u \\ u \end{pmatrix}' = u \cdot u' \quad e \quad e \quad u'$$

$$y' = \frac{e^{\cos x} \left(\cos x\right)' \cdot tgx - e^{\cos x} \cdot \frac{1}{\cos^2 x}}{\left(tgx\right)^2} = \frac{-e^{\cos x} \cdot \sin x \cdot tgx - e^{\cos x} \cdot \frac{1}{\cos^2 x}}{\left(tgx\right)^2}$$

$$y' = \frac{-e^{\cos x} \left(\sin x \cdot tgx + \frac{1}{\cos^2 x}\right)}{\left(tgx\right)^2}.$$

$$\Gamma$$
) $y^2x + 4y + 3x = 6$

Решение.

В данном случае зависимость между аргументом x и y задана уравнением, которое не разрешено относительно функции y. Чтобы найти производную y', следует дифференцировать по x обе части заданного уравнения, считая при этом y функцией от x, а затем полученное уравнение решить относительно искомой производной y'. Имеем;

$$2y \cdot y' \cdot x + y^2 + 4y' + 3 = 0$$

Из полученного равенства, связывающего x, y и y', выразим производную y':

$$2y \cdot y' \cdot x + 4y' = -y^2 - 3$$

$$y' = -\frac{y^2 + 3}{2xy + 4}$$

д)
$$y = x\sqrt[2]{\sin x}$$

Решение.

Предварительно прологарифмируем по основанию e обе части равенства:

$$\ln y = \ln(\sqrt[x]{\sin x})$$

$$\ln y = \ln(\sin x)^{\frac{1}{x^2}}$$

$$\ln y = \frac{1}{x^2} \ln(\sin x)$$

Теперь дифференцируем обе части равенства, считая *lny* сложной функцией от переменной x, В правой части равенства воспользуемся правилом

дифференцирования производной функций: $\left[u\cdot v\right]'=u'v+uv'$, получим: $\left(\ln\ y\right)'=\frac{1}{x^2}\cdot \ln\sin x+\frac{1}{x^2}\left(\ln\sin x\right)'$

$$\left(\ln y\right)' = \left(\frac{1}{x^2}\right) \cdot \ln \sin x + \frac{1}{x^2} \left(\ln \sin x\right)$$

$$\frac{1}{y}y' = -\frac{2}{x^3} \cdot \ln \sin x + \frac{1}{x^2} \cdot \frac{\cos x}{\sin x}$$

Умножая обе части последнего равенства на у и подставляя $\sqrt[x^2]{\sin x}$ вместо у, получаем:

$$y' = \frac{\left(x \cdot ctgx - 2\ln\sin x\right)}{\left(x^3\right)} \cdot \frac{x^2\sin x}{\left(x^3\right)}$$

81-90. Исследовать заданные функции методами дифференциального исчисления. Начертить их графики. Исследование функций и построение графиков проводить по следующей схеме:

- 1. найти область определения функции D(y);
- 2. исследовать функцию на непрерывность; найти точки разрыва функции и ее односторонние пределы в точках разрыва;
- 3. исследовать функцию на четность и нечетность.

- 4. найти точки экстремума функции и определить интервалы ее монотонности;
- 5. найти точки перегиба графика функции и определить интервалы выпуклости и вогнутости графика;
- 6. найти асимптоты графика функции;
- 7. построить график, используя результаты исследований;

81. a)
$$y = 2x^3 - 9x^2 + 12x - 5$$
;

6)
$$y = \frac{x^2 + 1}{x}$$

82. a)
$$y = x^3 - 6x^2 + 9x + 1$$
;

6)
$$y = \frac{x^2}{x - 1}$$

83. a)
$$y = x^3 - 3x^2 - 9x + 10$$
;

$$6) \ \ y = \frac{x^2 - 3}{x + 2}$$

84. a)
$$y = x^3 + 3x^2 - 9x - 10$$
;

6)
$$y = \frac{x^2 - 8}{x - 3}$$

85. a)
$$y = x^3 + 6x^2 + 9x + 2$$
;

$$6) \ \ y = \frac{x^2 + 9}{x + 4}$$

86. a)
$$y = 2x^3 - 3x^2 - 12x + 5$$
;

6)
$$y = \frac{x^2 + 4}{x}$$

87. a)
$$y = 2x^3 + 3x^2 - 12x - 8$$
;

6)
$$y = \frac{x^2 + 3}{x - 1}$$

88. a)
$$y = 2x^3 + 9x^2 + 12x + 7$$
;

$$6) \ \ y = \frac{x^2 + 5}{x + 2}$$

89. a)
$$y = 2x^3 - 15x^2 + 36x - 32$$
;

$$6) \ \ y = \frac{x^2 - 5}{x + 2}$$

90. a)
$$y = 2x^3 - 3x^2 - 36x + 20$$
;

6)
$$y = \frac{x^2 - 15}{x + 4}$$

Решение типового примера

Исследовать функции по схеме, указанной в условии задачи.

a)
$$y = \frac{1}{5} (2x^3 + 3x^2 - 36x - 21)$$
,

6)
$$y = \frac{x^2 + 20}{x - 4}$$
.

Решение.

a)
$$y = \frac{1}{5} (2x^3 + 3x^2 - 36x - 21)$$

- 1.Областью определения данной функции являются все действительные значения аргумента x, то есть D(y): $x \in (-\infty; +\infty)$.
- 2. Функция непрерывна на всей числовой прямой, нет точек разрыва, следовательно, нет вертикальных асимптот.
- 3. При исследовании на четность, нечетность найдем y(-x).

$$y(-x) = \frac{1}{5} \left(-2x^3 + 3x^2 + 36x - 21 \right)$$
 или $y(-x) = \frac{1}{5} \left(2x^3 + 3x^2 + 36x - 21 \right)$

Получили, что: $y(-x) \neq y(x)$ и $y(-x) \neq -y(x)$

Следовательно, функция ни четная, ни нечетная – функция общего положения.

- 4. Находим интервалы возрастания, убывания и экстремум функции, для этого:
- а) найдем производную функции

$$y = \begin{bmatrix} 2x + 3x - 36x - 21 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \frac{6}{2} & 1 \\ 5 & 6x + 6x - 36 & \frac{1}{5} & \frac{6}{5} & \frac{1}{5} & \frac{$$

б) Приравняем производную к нулю, решим уравнение y' = 0 и найдем критические точки I рода

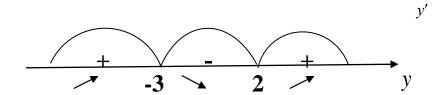
$$\frac{6}{5}(x^2 + x - 6) = 0 \Rightarrow x^2 + x - 6 = 0$$

$$x_1 = \frac{-1-5}{2} = -3$$
 ; $\Rightarrow x_1 = -3$ -критические точки.

$$x_2 = \frac{-1+5}{2} = 2$$
 $x_2 = 2$]

в) Критическими точками разобьем область определения на интервалы и

определим знак производной в каждом из интервалов.



Если,
$$x \in (-\infty; -3)$$
, например, $x = -4$, то $y'(-4) = {}^{6}(16 - 4 - 6) = {}^{36}\rangle 0$.
Если, $x \in (-3; 2)$, например, $x = 0$, то $y'(0) = -\frac{36}{5}\langle 0$.

Если,
$$x \in (+\infty; 2)$$
, например $x=3$, то $y'(3) = {6 \choose 9+3-6} = {36 \choose 5} 0$.

При $x \in (-\infty; -3) \cup (2; +\infty)$ функция возрастает, отмечаем это стрелкой \nearrow , при $x \in (-3; 2)$ функция убывает \searrow .

г) Если при переходе через критическую точку производная функции меняет знак с (+) на (-), то в этой точке функция имеет максимум (max), если знак меняется с (-) на (+), то в точке функция имеет минимум (min).

В нашем случае x=-3 – абсцисса точки max; x=2 – абсцисса точки min.

$$y_{\text{max}} = y(-3) = \frac{1}{5} [2 \cdot (-27) + 3 \cdot 9 + 108 - 21] = \frac{1}{5} \cdot 60 = 12$$
$$y_{\text{min}} = y(2) = \frac{1}{5} [2 \cdot 8 + 3 \cdot 4 - 72 - 21] = \frac{1}{5} (-65) = -13$$

Вычисляем значение функции в точках экстремума

Для построения графика укажем A(-3;12)- точка max; B(2;-13)- точка min.

5. Находим интервалы выпуклости, вогнутости и точки перегиба.

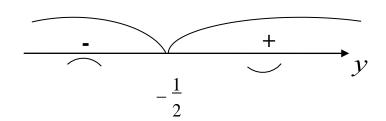
$$y' = (y')' = \begin{bmatrix} \frac{6}{5}(x^2 + x - 6) \end{bmatrix}' = \frac{6}{5}(2x + 1)$$

- а) найдем производную второго порядка.
- б) приравняем вторую производную к нулю, решим уравнение y' = 0

$$\frac{6}{5}(2x+1) = 0 \Rightarrow 2x+1 = 0 \Rightarrow x = -\frac{1}{2}$$

и найдем критические точки II рода.

в) область определения разобьем найденной точкой на интервалы и определим знак второй производной в каждом интервале



Расставляя знаки второй производной по интервалам, получаем, что в интервале $\begin{pmatrix} -\infty; -1\\ \hline 2 \end{pmatrix}$, график функции выпуклый, в интервале $\begin{pmatrix} -1; +\infty\\ \hline 2 \end{pmatrix}$ график функции вогнутый.

г) если при переходе через критическую точку II рода, y' меняет знак, то в этой точке имеем перегиб, в нашем случае $x = -\frac{1}{2}$ абсцисса точки перегиба.

Вычислим ординату точки перегиба.

$$y_{nерегиб} = y \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} = \frac{1}{5} \left(2 \cdot \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}^3 + 3 \cdot \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}^2 + 36 \cdot \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} - 21 \right) = \frac{1}{2}$$

$$C \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} - \text{точка } neperuбa.$$

6. Выясним наличие наклонных асимптот у графика данной функции.

Уравнение асимптоты ищем в виде

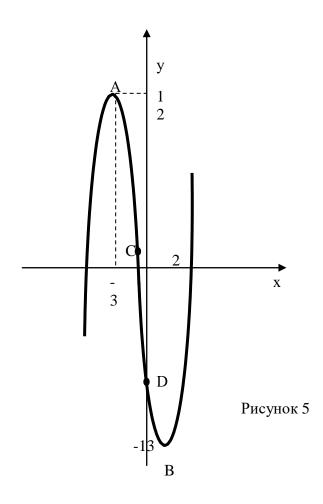
$$y=k \ x+b$$
, где $k=\lim_{x\to \infty} \frac{f(x)}{x}$; $b=\lim_{x\to \infty} [f(x)-kx]$.

$$x \rightarrow \infty$$
 X $x \rightarrow \infty$

$$k = \lim_{x \to \infty} \frac{\frac{1}{5} (2x^3 + 3x^2 - 36x - 21)}{1} = \lim_{x \to \infty} \frac{1}{2} \left[2x^2 + 3x - 36 - \frac{21}{3} \right] = \infty$$

Следовательно, наклонных асимптот график не имеет.

Можно найти точку пересечения с осью ОҮ, $x=0 \Rightarrow y = -\frac{21}{5} = -4,2 \Rightarrow D(0;-4,2)$.



6)
$$y = \frac{x^2 + 20}{x - 4}$$
.

1. Областью определения данной : D(y): $x \in (-\infty; 4) \cup (4; +\infty)$.

2. Заданная функция непрерывна всюду, кроме точки x=4. Вычислим ее односторонние пределы в этой точке:

односторонние пределы в этой точке:
$$f(x) = \frac{x^2 + 20}{\lim_{x \to 4-0} \frac{1}{x-4}} = -\infty; = \frac{x^2 + 20}{\lim_{x \to 4+0} f(x)} = \frac{x^2 + 20}{x-4}$$

Таким образом, точка x=4 является для заданной функции точкой разрыва второго рода, а прямая x=4 — вертикальной асимптотой графика.

3. При исследовании на четность, нечетность найдем y(-x).

$$y(-x) = \frac{(-x)^2 + 20}{-x - 4} = \frac{x^2 + 20}{-x - 4} \neq y(x)$$
 или $y(-x) = -\frac{x^2 + 20}{x + 4} \neq -y(x)$

Получили, что: $y(-x) \neq y(x)$ и $y(-x) \neq -y(x)$.

Следовательно, функция ни четная, ни нечетная – функция общего положения.

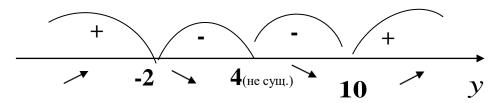
- 4. Находим интервалы возрастания, убывания и экстремум функции, для этого:
- а) найдем производную функции

$$y' = \frac{2x(x-4) - (x^2 + 20)}{(x-4)^2} = \frac{x^2 - 8x - 20}{(x-4)^2}.$$

б) Приравняем производную к нулю, решим уравнение y' = 0 и найдем критические точки I рода

$$\frac{x^2 - 8x - 20}{(x - 4)^2} = \begin{cases} 2 & \Rightarrow x_1 = -2 \\ 0 \Rightarrow x - 8x - 20 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -2 \\ x = 10 \end{cases}$$
 -критические точки.

в) Критическими точками и точкой x=4, в которой функция не существует, разобьем область определения на интервалы и определим знак производной в каждом из интервалов.



Рассматривая знаки производной по интервалам, получаем, что при $x \in (-\infty; -2) \cup (10; +\infty)$ функция возрастает, при $x \in (-2; 4) \cup (4; 10)$ функция убывает .

г) Получили x=-2 – абсцисса точки max x=10 – абсцисса точки min.

Вычисляем значение функции в точках экстремума:

$$y_{\text{max}} = y(-2) = -4$$
 $y_{\text{min}} = y(10) = 20$

Для построения графика укажем A(-2;-4)- точка max, B(10;20)- точка min.

- 5. Находим интервалы выпуклости, вогнутости и точки перегиба.
- а) найдем производную второго порядка.

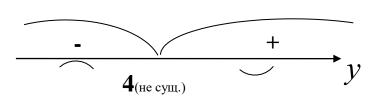
$$y' = \frac{(2x-8)(x-4)^2 - 2(x-4)(x^2 - 8x - 20)}{(x-4)^4} = \frac{2(x-4)[(x-4) - (x^2 - 8x - 20)]}{(x-4)^4} = \frac{36}{(x-4)^3}$$

б) приравняем вторую производную к нулю, решим уравнение y' = 0 и найдем критические точки II рода.

Так как, $y' \neq 0$, то график функции точек перегиба не имеет.

Остается выяснить вопрос об интервалах вогнутости.

в) область определения разобьем точкой разрыва x=4 на интервалы и определим знак второй



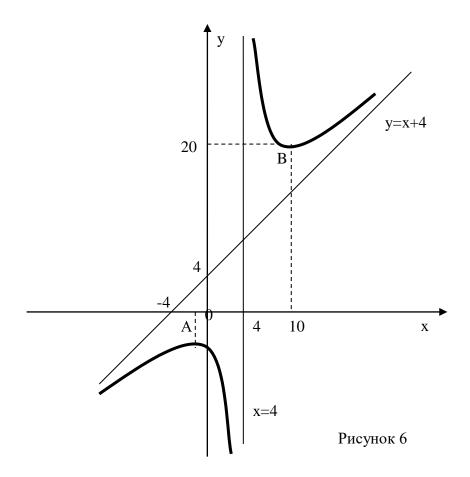
производной в каждом интервале. Расставляя знаки второй производной по интервалам, получаем, что в интервале $(-\infty;4)$, график функции выпуклый, в интервале $(4;+\infty)$ график функции вогнутый.

6. Выясним наличие наклонных асимптот у графика данной функции. Уравнение асимптоты ищем в виде

$$y=k \ x+b, \ \Gamma Де \ k = \lim_{x \to \infty} \frac{f(x)}{x}; \qquad b = \lim_{x \to \infty} [f(x)-kx].$$

Имеем $k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = 1$
 $= \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = 1$
 $= \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = 4.$
 $= \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 + 20}{x^2 + 20} = \frac{4x + 20}{x - 4} = 4.$

Таким образом, прямая y=x+4 — наклонная асимптота графика. График на рисунке 6



<u>Tema:7</u> Неопределенный интеграл (задачи 91-100). Перед выполнением задач необходимо изучить раздел 14 ДЕ-4 (математический анализ).

91-100. Найти неопределенные интегралы.

91. a)
$$\int \frac{3x^2 + 8x + 1}{\sqrt{x}} dx$$

6)
$$\int \frac{x^2 dx}{5x^3 + 1} \\ 2 - x^4 - \sqrt{x}$$

92. a)
$$\int \frac{dx}{x}$$

$$6) \int \frac{xdx}{\sqrt[3]{4x^2 - 3}}$$

$$B) \int x^3 \ln x dx$$

$$\Gamma) \int \frac{x \ dx}{(x+5)(x^2+3)}$$

B)
$$\int x \cos 5x dx$$

$$\Gamma) \int \frac{4x-1}{(x^2+2)(x-8)} dx$$

93. a)
$$\int \frac{3x^2 - 4x \sin x + 7}{\sqrt{x}} dx$$

 $\mathbf{B}) \int (x-1)e^{2x}dx$

$$6) \int \sqrt{5x^4 + 3} \cdot x^3 dx$$

$$\Gamma) \int \frac{3x-1}{x(x^2+3)} dx$$

94. a)
$$\int \frac{4^x \cdot \sqrt[3]{x} + 2^{\sqrt{x}}}{\sqrt[3]{x}} dx$$

$$\mathbf{B}) \int (2x-1)\sin 7x dx$$

6)
$$\int \frac{xdx}{2x^2 + 5}$$

$$\Gamma) \int \frac{2x+5}{x^3+2x} dx$$

95. a)
$$\int \frac{2 - 3x + \sqrt{x}}{\sqrt{x}} dx$$
$$x^3 dx$$

$$B) \int (5x+1) \ln x dx$$

$$6) \int \frac{1}{\sqrt{5x^4 + 3}}$$

$$\sqrt{x^4 - e^x x + 6}$$

$$\frac{2x-7}{\left(x^2+1\right)\left(x-3\right)}dx$$

96. a)
$$\int \frac{dx}{x}$$

B)
$$\int \arcsin x dx$$

$$6) \int \frac{\cos x dx}{\sqrt[3]{\sin x}}$$

$$\Gamma) \int \frac{x+2}{(x-1)(x^2+3)} dx$$

97. a)
$$\int \frac{\sqrt[3]_r \cdot 7^x + x^2 - 1}{\sqrt[3]_r} dx$$

$$\mathbf{B}) \int (2x-7)e^{-8x}dx$$

$$6) \int \frac{(\ln x + 3)dx}{x}$$

$$\Gamma \int \frac{x+5}{(x-3)(x^2+9)} dx$$

98. a)
$$\int_{-\frac{\sqrt{x^3}}}^{8+x+\frac{3}{\sqrt{x^2}}} dx$$

B)
$$\int \arccos x dx$$

б)
$$\int \sqrt{\ln x} dx$$

$$\Gamma$$
) $\int (2x-7) dx$

$$x$$

$$\sqrt{x^2 + 4}(x-3)$$

$$\sqrt{x^2 + 4}(x-3)$$

$$\ln x$$

$$99. a) \int \frac{1}{x^3} dx$$
B)
$$\int \frac{1}{x^4} dx$$

$$6) \int \frac{9^{tgx} dx}{\sin^2 x}$$

$$\Gamma) \int \frac{3x+1}{x^3-5x} dx$$

100. a)
$$\int \frac{\sqrt[5]{x} + 6\sqrt{x} - 8}{\sqrt[5]{x}} dx$$

$$\mathbf{B}) \int 2x \cdot 3^{2x} \, dx$$

б)
$$\int e^{\sin 2x} \cos 2x dx$$

$$\Gamma \int \frac{x-3}{\left(x_{2}+7, x+2\right)} dx$$

При решении задач 91-100 используйте таблицу 2 - основных неопределенных интегралов. **Таблица 2.**

$$1. \int dx = x + c \; ;$$

7.
$$\int a^x dx = \frac{a^x}{\ln a} + c;$$

2.
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1;$$

$$8. \int \sin x dx = -\cos x + c;$$

$$3. \int \frac{dx}{x} = 2 x + c;$$

$$9. \int \cos x dx = \sin x + c;$$

4.
$$\int \frac{dx}{x^2} = -\frac{1}{|x|} + c$$
;

10.
$$\int \frac{dx}{\sin^2 x} = -ctgx + c;$$

$$5. \int \frac{dx}{x} = \ln x + c;$$

11.
$$\int \frac{dx}{\cos^2 x} = tgx + c;$$

$$6. \int e^x dx = e^x + c;$$

$$12. \int tgx dx = -\ln \cos x + c;$$

13.
$$\int \underbrace{ctgxdx} = \ln \sin x + c;$$

$$\frac{\sqrt{}}{ax+b} = \frac{2}{a} ax+b+c$$

14.
$$\int \frac{dx}{a^2 - x^2} = \arcsin \frac{x}{a} + c ;$$

$$20. \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$$

15.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c;$$

21.
$$\int \sin ax dx = -\frac{1}{a}\cos ax + c$$

16.
$$\int \frac{dx}{x^2 + t} = \ln(x + \sqrt{x^2 + t}) + C;$$

22.
$$\int \cos ax dx = \frac{1}{a} \sin ax + c$$

17.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \frac{x - a}{x + a} + c ;$$

18.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$
23.
$$\int \frac{dx}{ax + b} = \frac{1}{a} \ln \left| ax + b \right| + c$$

Решение типового примера

Найти следующие неопределенные интегралы:

a)
$$\int \frac{\sqrt[4]{x} + 3x - 8}{\sqrt[4]{x}} dx$$
.

Решение.

Поделим числитель на знаменатель и после преобразований получим:

$$\int \frac{\sqrt[4]{x} + 3x - 8}{\sqrt[4]{x}} dx = \int \left(\frac{4}{x} - 3x - 8 \right) \left(\frac{3}{x} - \frac{1}{x} \right) dx = \int \left(\frac{3}{x} - \frac{1}{x} \right) dx = \int \left(\frac{3}{x} - \frac{1}{x} \right) dx$$

Воспользуемся основными свойствами неопределенного интеграла и

формулами:
$$\int dx = x + c$$
; $\int x^n dx = \frac{x^{n+1}}{n+1} + c$.

$$\int (1+3x^{\frac{3}{4}}-8x^{-\frac{1}{4}})dx = x + \frac{3x^{\frac{7}{4}}}{7/4} - \frac{8x^{\frac{3}{4}}}{3/4} + C$$

$$2^{tg \ 3x}$$

$$\mathbf{6}) \int \frac{1}{\cos^2 3x} dx.$$

Решение.

Для вычисления данного интеграла используем метод подстановки.

Пусть
$$tg3x = t$$
, тогда $\frac{3dx}{\cos^2 3x} = dt$ или $\frac{dx}{\cos^2 3x} = \frac{1}{3}dt$, $dx = \frac{1}{3}\cos^2 3x \cdot dt$

Производим замену переменной:

$$\int \frac{2^{tg \, 3x}}{\cos^2 3x} dx = \int \frac{2^t \, 1}{\cos^2 3x} \cdot \frac{1}{3} \cos 3x dt = \frac{1}{3} \int 2 \, dt \,, \qquad \text{используя} \qquad \mathbf{формулу}$$

$$\int_{-x}^{-x} a^x \qquad \qquad 1 \quad t \qquad 1 \quad 2^t \qquad \qquad 2^{tg \cdot 3x}$$

$$a dx = \frac{1}{\ln a} + c$$
, получим: $\frac{1}{3} \int 2 dt = \frac{1}{3 \ln 2} + c = \frac{1}{3 \ln 2} + c$.

$$\mathbf{B}) \int \frac{\ln x}{x^6} dx.$$

Решение.

Применим формулу интегрирования по частям

$$\int u dv = uv - \int v du$$

Положим $u = \ln x$, $dv = \frac{dx}{x^6}$. Тогда $du = \frac{dx}{x}$, $v = \int \frac{dx}{x^6} = -\frac{1}{5x^5}$.

Следовательно,

$$\int \frac{\ln x}{x^6} dx = -\frac{\ln x}{5x^5} + \int \frac{1}{5x^5} \cdot \frac{dx}{x} = -\frac{\ln x}{5x^5} + \frac{1}{5} \int \frac{dx}{x^6} = -\frac{\ln x}{5x^5} - \frac{1}{25x^5} + c.$$

$$\Gamma \int \frac{xdx}{(x-1)(x^2+1)}.$$

Решение.

Разложим подынтегральную дробь на сумму простейших

$$\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}.$$

Освобождаемся от знаменателя:

$$x = A(x^2 + 1) + (Bx + C)(x - 1).$$

Приравниваем коэффициенты при одинаковых степенях

$$x^{2} \begin{vmatrix} 0 = A + B; & A = -B \\ x & 1 = -B + C; \\ x^{0} & 0 = A - C; & A = C. \end{vmatrix}$$

Отсюда $A = {}^{1}, B = -{}^{1}, C = {}^{1}$. Таким образом,

$$\int \frac{x}{dx} dx = -\frac{1}{2} \int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{dx}{dx} = -\frac{1}{2} \int \frac{xdx}{dx} + \frac{1}{2} \int \frac{dx}{dx} + \frac{1}{2} \int \frac{dx}{dx}$$

В первом интеграле используем метод подстановки.

Пусть
$$x^2 + 1 = t$$
, тогда

2xdx = dt или dx = 2x.

Производим замену переменной:

$$\int \frac{xdx}{c} = \int \frac{x}{c} \cdot \frac{dt}{dt} = \int \frac{dt}{dt} = \int \frac{dt}{dt} = \int \frac{1}{2} \ln t + c = \int \frac{1}{2} \ln \frac{x^2 + 1 + c}{t} \cdot \frac{dt}{dt} = \int \frac{dt}{dt} = \int \frac{dt}{dt} = \int \frac{1}{2} \ln t + c = \int \frac{1}{2} \ln \frac{x^2 + 1 + c}{t} \cdot \frac{dt}{dt} = \int \frac{dt}{dt} = \int$$

Второй и третий интегралы вычисляем по формулам:

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c; \qquad \int \frac{dx}{ax + b} = \frac{1}{a} \ln |ax + b| + c.$$

Окончательно заданный интеграл равен:

Окончательно заданный интеграл равен.
$$\int \frac{xdx}{(x-1)(x^2+1)} = -\frac{1}{\ln} \ln \frac{x^2+1+\frac{1}{2}arctgx+\frac{1}{2}\ln |x-1|+c}{2} \cdot \frac{x^2+1+\frac{1}{2}arctgx+\frac{1}{2}\ln |x-$$

Решение.

Преобразуем, знаменатель дроби, стоящей под знаком интеграла следующим образом:

$$x^{2}-4x+8=x^{2}-4x+4+4=(x-2)^{2}+2^{2}$$
.

Тогда после подстановки t = x - 2 получаем

$$\int \frac{3x-1}{(x-2)^2 + 2^2} dx = \int \frac{3(t+2)-1}{t^2 + 2^2} dt = \int \frac{3t+5}{t^2 + 2^2} dt = \int \frac{3t}{t^2 + 2^2} dt + \int \frac{5dt}{t^2 + 2^2} = \frac{3}{2} \ln t^2 + 4 + \frac{5}{2} \arctan \left(\frac{t}{2} + c \right) = \frac{3}{2} \ln \left| (x-2)^2 + 4 \right| + \frac{5}{2} \arctan \left(\frac{x-2}{2} + c \right) = \frac{3}{2} \ln \left| x^2 - 4x + 8 \right| + \frac{5}{2} \arctan \left(\frac{x-2}{2} + c \right)$$

При вычислении первого интеграла использовали замену переменной $z=t^2+4$, тогда dz=2tdt,

откуда
$$\int \frac{3tdt}{t^2 + 4} = \frac{3}{5} \int \frac{2tdt}{t^2 + 4} = \frac{3}{5} \int \frac{dz}{t^2 + 4} = \frac{3}{5} \ln(t^2 + 4) + c$$
.

Тема:8 Определенный интеграл, его вычисление, приложения (задачи 101-

110,111-120,121-130). Перед выполнением задач необходимо изучитьраздел 15 ДЕ-4(математический анализ).

101-110.Вычислить определенные интегралы.

$$101. \int_{3}^{8} \frac{\sqrt{x+1}}{\sqrt{x+1}+4} dx$$

$$102. \int_{0}^{5} \frac{\sqrt{x+3}}{\sqrt{x+3}+9} dx$$

$$103. \int_{0}^{5} \frac{\sqrt{2x-1}}{\sqrt{2x-1}+16} dx$$

$$108. \int_{1}^{9} \frac{\sqrt[3]{x-1}}{\sqrt[3]{x-1}+1} dx$$

$$109. \int_{1}^{20} \frac{\sqrt[3]{x-1}}{\sqrt[3]{x-1}+1} dx$$

$$109. \int_{1}^{3} \frac{\sqrt[3]{x-1}}{\sqrt[3]{x-1}+1} dx$$

Решение типового примера

Найти определенный интеграл:

$$\int_{0}^{3} \frac{\sqrt{x+1}}{\sqrt{x+1}+2} dx$$

Решение.

Для вычисления определенного интеграла, если промежуток интегрирования конечен и подынтегральная функция на данном промежутке непрерывна, можно воспользоваться формулой Ньютона-Лейбница:

Для вычисления данного интеграла воспользуемся методом подстановки в определенном интеграле. Введем новую переменную следующей подстановкой: $\sqrt{x+1} = t$, тогда $x+1=t^2$ или dx = 2tdt.

Определим пределы интегрирования для переменной t. При x=0, получаем $t_{_{\!\it H}}=1$, при x=3 получаем $t_{_{\!\it G}}=2$.

Выразив подынтегральное выражение, через t и dt и перейдя к новым пределам, получим

$$\int_{0}^{3} \frac{\sqrt{x+1}}{\sqrt{x+1}+2} dx = \int_{1}^{2} \frac{t}{t+2} 2t dt = 2 \int_{1}^{2} \frac{t^{2}}{t+2} dt.$$

В подынтегральной дроби выделим целую часть, поделив числитель на знаменатель:

$$-t^2+2t$$
 $\left|\frac{t+2}{t-2}\right|$ Получим $\frac{t^2}{t+2}=t-2+\frac{4}{t+2}$. $-\frac{-2t}{-2t-4}$

Тогда заданный интеграл примет вид

$$\int_{0}^{3} \frac{\sqrt{x+1}}{\sqrt{x+1}+2} dx = 2 \int_{1}^{3} t dt - 4 \int_{1}^{3} dt + 8 \int_{1}^{3} \frac{dt}{t+2} = t^{2} \Big|_{1}^{3} - 4t \Big|_{1}^{3} + 8 \ln|t+2|\Big|_{1}^{3} =$$

=
$$(9-12+8\ln 5)-(1-4+8\ln 3)=8\ln \frac{5}{3}$$

111-120. Вычислить площадь плоской фигуры, ограниченной заданными линиями.

111.
$$y = -x^2 - 2x + 3$$
 $y = -2x - 1$
112. $y = x^2 + 6x + 7$ $y = x + 7$
113. $y = -x^2 - 6x - 5$ $y = x + 1$
114. $y = \frac{x^2}{4} - 2x + 4$ $y = \frac{x}{2} + 4$
115. $y = \frac{x^2}{3} + 2x + 3$ $y = x + 3$

116.
$$y = x^{2} - 4x + 1$$
117.
$$y = -x^{2} - 6x + 5$$
118.
$$y = x^{2} - 4x + 4$$

$$y = x + 1$$

$$y = -x^2 - 6x + 5$$

$$y = -x + 5$$

$$y = x^2 - 4x + 4$$

$$y = x$$

119.
$$y = x^2 - 6x + 5$$
 $y = -x - 1$
120. $y = \frac{x^2}{3} - 2x + 3$ $y = 2x - 6$.

Решение типового примера.

Вычислить площадь фигуры ограниченной линиями

$$y = \frac{1}{3}x^2;$$
 $y = -x + 6$

Решение.

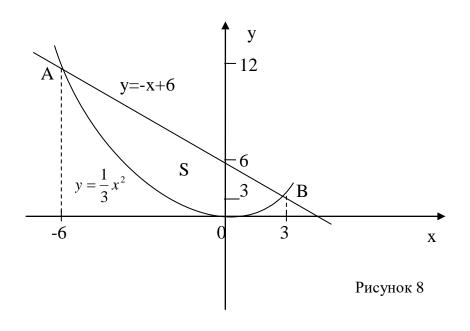
Найдём точки пересечения этих линий и сделаем чертёж, который указан на рисунке 8.

Решим систему:

$$\begin{cases} y = \frac{1}{3}x^{2} & \Rightarrow \begin{cases} y = \frac{1}{3}x^{2} \\ y = -x + 6 \end{cases} & \Rightarrow \begin{cases} y = \frac{1}{3}x^{2} \\ x = -x + 6 \end{cases} & \Rightarrow \begin{cases} y = \frac{1}{3}x^{2} \\ x = \frac{-3 - 9}{2} = -6 \end{cases} \\ \begin{vmatrix} x \\ y = -x + 6 \end{vmatrix} & \begin{vmatrix} x \\ y$$

Точки пересечения линий: A(-6; 12); B(3;3)

 $y = \frac{1}{3}x^2$ - парабола, ветви вверх, вершина O(0;0), y = -x + 6 - прямая линия.



Вычисление площади осуществляем по формуле:

$$S = \int_{a}^{b} [f_2(x) - f_1(x)] dx,$$

 $y = f_1(x)$ -кривая ограничивающая фигуру снизу,

 $y = f_2(x)$ -кривая ограничивающая фигуру сверху

В нашем случае
$$f_1(x) = \frac{1}{3}x^2$$
; $f_2(x) = -x + 6$

$$S = \int_{6}^{3} \left[() \frac{1}{3} \right]_{-x+6}^{2} \left[\frac{1}{3} \right]_{-6}^{2} = \left[-\frac{1}{2} \right]_{-6}^{2} + 6x - \frac{1}{3} \cdot \frac{x^{3}}{3} \right]_{-6}^{3} = \left[-\frac{1}{2} \right]_{-6}^{2} = \left[-\frac{1}{2}$$

121-130. Вычислить объем тела, образованного вращением вокруг указанной оси фигуры, ,ограниченной линиями.

121.
$$y = 4 - 2x$$
; $y = 2x^2$; och OX .

122.
$$y = -x + 2;$$
 $y = x^2;$ ось OY .

123.
$$y = -x + 4$$
; $y = 3x^2$; ось OX .

124.
$$y = -3x + 12;$$
 $y = \frac{1}{3}x^2;$ ось OX .

125.
$$y = -x + 3;$$
 $y = \frac{1}{4}x^2;$ ось OY .

126.
$$y = -3x + 8$$
 $y = \frac{1}{2}x^2$ och OX .

127.
$$y = -3x + 14$$
 $y = 2x^2$; ось OX .
128. $y = -x + 6$ $y = \frac{1}{3}x^2$; ось OY .
129. $y = -2x + 5$ $y = 3x^2$; ось OY .
130. $y = -2x + 9$ $y = \frac{1}{3}x^2$; ось OY .

$$y = -2x + 5$$
 $y = 3x^2$; ось OY .

130.
$$y = -2x + 9$$
 $y = \frac{1}{3}x^2$; och OX .

Решение типового примера

Найти объем тела, образованного вокруг оси ОХ фигуры, расположенной в первом квадранте и ограниченной параболой $y = 8x^2$, прямой y = -6x + 14 и осью OX.

Решение.

Объем тела, образованного вращением вокруг оси OX фигуры, ограниченной кривой y=f(x), осью OX и прямыми x=a и x=b, вычисляется по формуле

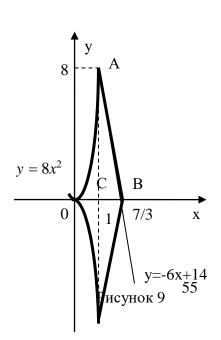
$$V_{OX} = \pi \int_{a}^{b} y^2 dx. \tag{1}$$

Объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной кривой x=w(y), осью *OY* и прямыми y=c и y=d, вычисляется по формуле

$$V_{OY} = \pi \int_{c}^{d} x^2 dy \quad . \tag{2}$$

Для решения указанной задачи построим чертеж. Найдем абсциссу точки пересечения параболы и прямой в первом квадранте. Для этого решим систему

уравнений
$$\begin{cases} y = 8x^2 \implies 8x^2 = -6x + 14 \Rightarrow 4x^2 + 3x - 7 = 0 \Rightarrow \begin{bmatrix} x_1 = -7/4 \\ y = 8x^2 \end{bmatrix} \end{cases}$$
 $y = 8x^2$ $y = 8x^2$



Первому квадранту соответствует корень $x_2 = 1 \Rightarrow y_2 = 8 \Rightarrow A(1;8)$ - точка

пересечения прямой и параболы в первом квадранте.

Найдем абсциссу точки пересечения прямой с осью ОХ, решив уравнение -6x+14=0, откуда x=7/3. Полученное тело вращения указано на рисунке 9.

Воспользуемся формулой (1)

$$V_{OX} = \pi \int_{a}^{b} y^2 dx.$$

Искомый объем равен сумме двух объемов, образованных вращением криволинейных трапеции: OAC при $0 \le x \le 1$; CAB при $1 \le x \le 7/3$ вокруг оси OX.

$$V = V_{OAC} + V_{CAB} \left(= \pi \int_{0}^{1} 8x^{2} \right)^{2} dx + \pi \int_{1}^{7/3} (-6x + 14)^{2} dx.$$

Для вычисления второго интеграла воспользуемся подстановкой:
$$t = -6x + 14 \Rightarrow dt = -6dx \Rightarrow dx = -\frac{1}{-}dt \Rightarrow \begin{bmatrix} t_1 = 8 \\ - \end{bmatrix} - \text{пределы интегрирования.}$$

$$6 \qquad \begin{bmatrix} t_2 = 0 \end{bmatrix}$$

$$V = 64\pi \int_{0}^{1} x^{4} dx - \int_{0}^{1} t^{2} dt = 64\pi \Big|_{0}^{1} \int_{0}^{1} \pi \left(t^{3}\right)^{0} \frac{64\pi}{64\pi} \frac{256\pi}{256\pi} \frac{1856\pi}{1856\pi} \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta \cdot \frac{1}{2}\right) \Big|_{0}^{1} \left(\kappa y \delta \cdot e \delta$$

Тема:9 Несобственные интегралы (задачи 131-140). Перед выполнением задач необходимо изучить раздела 16 ДЕ-4 (математический анализ).

-1

131-140. Вычислить несобственные интегралы.

$$^{\circ}$$
 dx $^{\circ}$ xdx

$$131. \int_{0}^{\infty} \frac{1}{(x+2)^{3}}$$

$$\int_{0}^{\infty} x \cdot e \, dx$$

$$136. \int_{x^2-1}$$

$$^{\circ}$$
 dx

$$137. \int_{0}^{\infty} \frac{1}{(3x-1)^{4}}$$

133.
$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^3}$$

$$\int_{0}^{\infty} \frac{\sqrt[3]{x^2 + 1}}{\sqrt[3]{x^2 + 1}}$$
134. $\int_{0}^{\infty} \frac{dx}{(x+3)^4}$
139. $\int_{-\infty}^{\infty} \frac{xdx}{(x^2 + 2)^3}$

135.
$$\int_{-\infty}^{0} \frac{x dx}{\sqrt{x^2 + 1}}$$
 140.
$$\int_{0}^{\infty} x^2 e^{-x^3} dx$$

Решение типового примера.

Вычислить несобственные интегралы или доказать их расходимость.

$$\int_{3}^{\infty} \frac{dx}{x \cdot \ln^2 x}$$

Решение.

Данный интеграл является интегралом первого типа с бесконечным пределом интегрирования.

За значение интеграла принимается предел, к которому стремиться соответствующий определенный интеграл при стремлении пределов интегрирования к бесконечности:

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx; \int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx; \int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx$$

. Если указанные пределы конечны, то говорят, что несобственные интеграл сходится. Если же предел бесконечен(не существует), то говорят, что несобственный интеграл расходится.

В заданном интеграле применяем подстановку в определенном интеграле.

Пусть
$$\ln x = t$$
, тогда $\frac{dx}{x} = dt$, если $x = 3$, то $t = \ln 3$; $x \to \infty$, то $t \to \infty$, получим:

$$\int_{-2}^{\infty} dt \int_{-2}^{b} dt \int_{-2}^{b} = \lim_{|x| \to \infty} \left| -\frac{1}{t} \right|^{b} = \lim_{|x| \to \infty} \left| -\frac{1}{t}$$

$$_{\ln 3} t$$
 $_{b \to \infty} _{\ln 3} t$ $_{b \to \infty} \left(\begin{array}{cc} \\ \\ \end{array} \right)_{\ln 3}$ $_{b \to \infty} \left(\begin{array}{cc} \\ \end{array} b \end{array} \begin{array}{cc} \ln 3 \\ \end{array} \right)$ $\ln 3$

т.к. при
$$b \to \infty \Rightarrow \frac{1}{b} \to 0$$
. Интеграл сходится.

Тема:10 Дифференциальные уравнения.(задачи 141-160). Перед выполнением задач необходимо изучить разделы 21,22,23 ДЕ-5(дифференциальные уравнения)

141-150. Найти общее решение (общий интеграл) дифференциальных уравнений первого порядка.

141. $xy' + y \ln \frac{y}{x} = 0$	146. $y' + y \cdot \frac{1}{x} = \frac{e^x}{x}$
$142. \ xy \cdot y' - y^2 - 3x^2 = 0$	$147. \ xy' - y = x\sqrt{x}$
143. $xy' = y + \sqrt{x^2 - y^2}$	$148. \ xy \cdot y' = 6x^2 + y^2$
144. $y' + y = e^{-x}$	149. $x^2y' - y^2 - x^2 = 0$
$145. \ y' - 5x^4y = e^{x^5}$	$150. \ y' = \frac{y}{x} - tg\frac{y}{x}$

Решение типового примера

Найти общее решение (общий интеграл) дифференциальных уравнений первого порядка.

a)
$$y' - yctgx = \frac{1}{\sin x}$$
.

Решение.

Данное уравнение является линейным уравнением первого порядка, т.е. уравнением вида:

$$y' + P(x)y = Q(x)$$

Для решений уравнений такого типа полагают $y = u \cdot v$, где u, v — независимые функции от x, y' = u'v + uv'. Подставляем y и y' в данное уравнение в нашем случае будем иметь: $\sin x$

$$u'v + uv' - uv \cdot ctgx = \frac{1}{}$$
 или $(u' - uctgx) \cdot v + uv' = \frac{1}{}$

 $\frac{1}{s}$ i
n
x

Подберем функцию u = u(x) так, чтобы выражение в скобке, обращалось в

нуль. Для нахождения функций u(x) и v(x) получим систему:

$$\begin{cases} u' - uctgx = 0 \\ uv' = \frac{1}{\sin x} \end{cases}$$
 Из первого уравнения системы определяем функцию $u(x)$,

имеем дифференциальное уравнение с разделяющимися переменными:

$$u' - uctgx = 0 \Rightarrow \frac{du}{dx} = u \cdot ctgx \Rightarrow \frac{du}{u} = ctgx \cdot dx \Rightarrow \frac{du}{u} = \frac{\cos x}{\sin x} dx \Rightarrow$$

 $\ln u = \ln \sin x \Rightarrow u = \sin x$

Для определения функции v(x), найденное значение функции u(x)

подставляем во второе уравнение системы (*)

$$\sin x \cdot v' = \frac{1}{\sin x} \implies v' = \frac{1}{\sin^2 x} \implies v = -ctgx + c$$

Записываем общее решение данного уравнения в виде $y = u \cdot v$ или

$$y = \sin x \left(-ctgx + c\right);$$
 $y = \sin x \left(-\frac{\cos x}{\sin x} + c\right);$

 $y = -\cos x + c \sin x$ - общее решение.

$$6) x \cdot \left(y' + 2e^{\frac{y}{x}} \right) = y.$$

Решение.

Разделим обе части уравнения на х:

$$\begin{vmatrix} y \\ y' + 2e^x \end{vmatrix} = \frac{y}{x}.$$

Данное уравнение является однородным, т.к. содержит функции одного и

того же измерения относительно переменных х и у.

Применяем подстановку:
$$\frac{y}{x} = t \Rightarrow y = x \cdot t \Rightarrow y' = t + t' \cdot x$$
, тогда уравнение

примет вид:
$$t+t' \cdot x + 2e^t = t \Rightarrow t' \cdot x + 2e^t = 0$$
.

Получили уравнение с разделяющими переменными относительно x и t .

Разделяем переменные и интегрируем:

$$xdt = -2e^{t} dx$$

$$-\frac{dt}{e^{t}} = 2\frac{dx}{x}$$

$$-\int \frac{dt}{e_{t}} = 2\int \frac{dx}{x}$$

$$e^{-t} = 2\ln x + \ln c \Rightarrow e^{-t} = \ln x^{2} \cdot c.$$

Возвращаясь к исходной переменной, получим:

$$e^{-\frac{y}{x}} = \ln |x^2 \cdot c|$$
 - общий интеграл.

151-160. Даны дифференциальные уравнения второго порядка.

Найти: а) общее решение дифференциального уравнения, допускающего понижение порядка; б) частное решение линейного неоднородного уравнения, удовлетворяющее начальным условиям.

151. a) $2yy' = (y')^2$	6) $y' - 2y' = 2x + 1$ y(0) = 1, y'(0) = 3
152. a) $xy' - y' = x^2$	5) y' - 2y' = -4x y(0) = 1, y'(0) = 4
153. a) $y' = -\frac{y'}{x}$	6) $y' + y' - 2y = 6x^2$ y(0) = 2, y'(0) = 1
154. a) $y^3y' + 1 = 0$	6) $y' + 2y' + y = e^x$ y(0) = 0, y'(0) = 2
155. a) $y'tgx = y' + 1$	6) $y' - 4y' + 5y = 5x$ y(0) = 2, y'(0) = 1

Решение типового примера

Решить дифференциальные уравнения второго порядка.

a)
$$(x^3 + 1) \cdot y' = 3x^2 \cdot y'$$

Решение.

Данное дифференциальное уравнение допускает понижение порядка,

не содержит явно функцию у.

Положим y' = p, тогда $y' = p' = \frac{dp}{dx}$ и уравнение примет вид

$$(x^3+1)\cdot\frac{dp}{dx} = 3x^2 \cdot p$$

Получили уравнение первого порядка с разделяющимися переменными, разделим переменные и проинтегрируем обе части

$$\frac{dp}{p} = \frac{3x^2}{x^3 + 1} dx,$$

$$\int \frac{dp}{p} = \int \frac{3x^2}{x^3 + 1} dx,$$

$$\ln|p| = \ln x^3 + 1 + \ln c$$

где интеграл, стоящий в правой части решаем подстановкой $t = x^3 + 1$ и

приводим к табличному $\int \frac{dt}{t} = \ln |t|_+ c$.

Применяя свойство логарифма, получим

$$\ln|p| = \ln|(x^3 + 1) \cdot c| \Longrightarrow p = c_1 \cdot (x^3 + 1).$$

Возвращаясь к подстановке, получим:

$$y' = c_1 \cdot (x^3 + 1) \Rightarrow dy = c_1 \cdot (x^3 + 1) dx \Rightarrow \int dy = c_1 \int (x^3 + 1) dx$$

тогда
$$y = c_1 \cdot \left(\frac{x^4}{4} + x + c_2\right)$$
 - общее решение.

6)
$$y'$$
 $2(y')^2$

y-1 ——

Решение.

Данное уравнение также допускает понижение порядка, в нем явно отсутствует переменная x.

Положим
$$y' = p$$
, тогда $y' = p \cdot \frac{dp}{dy}$.

Подставляя, получим уравнение с разделяющимися переменными

$$p \cdot \frac{dp}{dy} = \frac{2p^2}{y - 1}.$$

Разделяя переменные и интегрируя, получим

$$\int \frac{dp}{p} = \int \frac{2dy}{y-1} \Rightarrow \ln|p| = 2\ln|y-1| + \ln|c_1| \Rightarrow p = c_1 \cdot (y-1)^2.$$

Возвращаясь к переменной у, имеем

$$y' = c_1 \cdot (y-1)^2 \Rightarrow \frac{dy}{(y-1)^2} = c_1 dx \Rightarrow \int \frac{dy}{(y-1)^2} = \int c_1 dx,$$

где интеграл, стоящий в левой части подстановкой t = y - 1 приведем к

табличному
$$\int \frac{dt}{t^2} = -\frac{1}{t} + c$$
 , тогда получим

$$-\frac{1}{y-1} = c_1 \cdot x + c_2$$
, откуда $y = 1 - \frac{1}{c_1 \cdot x + c_2}$ - общее решение.

B)
$$y' - y' - 6y = 10e^{3x}$$
; $y(0) = 1$, $y'(0) = -4$

Решение.

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами вида:

$$y' + py' + q = f(x)$$
, где p,q — числа.

Общее решение этого уравнения состоит из суммы общего решения соответствующего однородного уравнения (y' + py' + q = 0) и частного

решения неоднородного уравнения т.е. $y = Y + y^{-}$

Чтобы найти общее решение однородного уравнения Y, составляют характеристическое уравнение $k^2 + pk + q = 0$, по корням этого уравнения записывают вид общего решения Y

В нашем примере: y' - y' - 6y = 0 - соответствующее однородное уравнение.

 $k^2 - k - 6 = 0$ – характеристическое уравнение, найдем его корни: $D = 25 \implies k_1 = -2; \quad k_2 = 3.$ Корни действительные различные, следовательно,

общее решение однородного уравнения имеет вид: $Y = c_1 e^{-2x} + c_2 e^{3x}$.

Корни характеристического уравнения $k^2 + pk + q = 0$	Общее решения
$1.D > 0 \;\; k_1 eq k_2$ -действительные различные	$Y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$
2. $D = 0$ $k_1 = k_2$ - действительные равные	$Y = C_1 e^{k2x} + C_2 x e^{k2x} = e^{k2x} (C_1 + C_2)$
$\begin{bmatrix} k_1 = \alpha + \beta \cdot i \\ k_2 = \alpha - \beta \cdot i \end{bmatrix}$ -комплексные сопря женные.	$Y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

Частное решение неоднородного уравнения находим по виду правой части уравнения, при этом: если $f(x) = P(x)e^{2x}$, где $P_n(x)$ многочлен n-ой степени с неопределенными коэффициентами, то частное решение будет иметь вид: $1. \quad y = Q_n(x)e^{2x}$, где $Q_n(x)$ - многочлен n-ой степени с неопределенными

коэффициентами 2. $\bar{y} = x \cdot Q_n(x) \cdot e^{2x}$, если α совпадает с одним из корней характеристического

уравнения $(\alpha = k_1 u \pi u \alpha = k_2)$

3.
$$y = x^2 \cdot Q_n(x)e^{2x}$$
если $\alpha = k_1 = k_2$

Если
$$f(x) = P_n(x), mo\alpha = 0$$

В нашем примере:

 $f(x) = 10e^{3x}$, $\alpha = 3 = k_2$ имеем второй случай, множитель перед e^{3x} - многочлен

нулевой степени, частное решение записываем в виде: $\bar{y} = xAe^{3x}$, где A

неопределенный коэффициент, чтобы найти значение A решение y подставляем в данное уравнение, для этого найдем y и y

$$\frac{y'}{y} = (xA \cdot e^{3x})' = A(e^{3x} + 3xe^{3x}) = Ae^{3x} + A \cdot 3 \cdot x \cdot e^{3x}$$

$$\frac{y''}{y'} = 3Ae^{3x} + 9Axe^{3x} = 6Ae^{3x} + 9Axe^{3x}$$

Подставляем в данное уравнение значение y, y, y

$$y = c_1 e^{-2x} + c_2 e^{3x} + 2x \cdot e^{3x}$$
 - общее решение данного уравнения.

Чтобы найти частное решение, удовлетворяющее начальным условиям y(0) = 1, y'(0) = -4, найдем:

$$y' = -2c_1 e^{-2x} + 3c_2 e^{3x} + 2 \cdot e^{3x} + 6x \cdot e^{3x} .$$

Используя начальные условия, получим систему уравнений:

$$\begin{cases}
1 = c_1 \cdot e^0 + c_2 \cdot e^0 + 2 \cdot 0 \cdot e^0 \\
\Rightarrow \begin{cases}
c_1 + c_2 = 1
\end{cases}
\Rightarrow \begin{cases}
c_1 = 1 - c_2
\end{cases}
\Rightarrow \begin{cases}
c_1 = 1 - c_2
\end{cases}
\Rightarrow \begin{cases}
c_1 = 1 - c_2
\end{cases}
\Rightarrow \begin{cases}
c_1 = \frac{1}{5}
\end{cases}$$

$$[-4 = -2c_1 \cdot e^0 + 3c_2 \cdot e^0 + 2 \cdot e^0 + 6 \cdot 0 \cdot e^0
\end{cases}$$

$$[-2c_1 + 3c_2 = -6
]$$

Следовательно, $y = \frac{1}{5}e^{-2x} + \frac{4}{5}e^{\frac{4}{5}} + 2x \cdot e^{3x}$ - частное решение неоднородного уравнения.

Савельева Екатерина Владимировна

Математика: методические указания для выполнения контрольной и

самостоятельной работы по дисциплине (модулю) для обучающихся заочной

формы обучения по направлению подготовки 21.03.02 Землеустройство и

кадастры. Часть 1.

Электронное задание

ФГБОУ ВО Приморская ГСХА

Адрес: 692510, г. Уссурийск, пр-т Блюхера, 44

72